找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computing Statistics under Interval and Fuzzy Uncertainty; Applications to Comp Hung T. Nguyen,Vladik Kreinovich,Gang Xiang Book 20121st ed

[复制链接]
楼主: polysomnography
发表于 2025-4-1 03:54:59 | 显示全部楼层
发表于 2025-4-1 07:30:52 | 显示全部楼层
Types of Interval Data Sets: Towards Feasible Algorithmsharacteristics are mean and variance. We already know that computing the mean under interval uncertainty is straightforward. However, as the previous chapter shows, computing variance . under interval uncertainty is, in general, an NP-hard (computationally difficult) problem. As we will see in the f
发表于 2025-4-1 11:08:26 | 显示全部楼层
Computing Variance under Interval Uncertainty: Efficient Algorithmsnt . can be always computed in feasible (polynomial) time). Since we cannot always efficiently compute the upper endpoint . , we therefore need to consider cases when such an efficient computation may be possible.
发表于 2025-4-1 17:31:21 | 显示全部楼层
Computing Variance under Hierarchical Privacy-Related Interval Uncertaintye desired statistical characteristics..To prevent privacy violations, we replace the original values of the quasiidentifier variables with ranges. For example, we divide the set of all possible ages into ranges [0, 10], [10, 20], [20, 30], etc. Then, instead of storing the actual age of 26, we only
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 07:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表