找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2022 Workshops; Tel Aviv, Israel, Oc Leonid Karlinsky,Tomer Michaeli,Ko Nishino Conference proceedings 2023 The Edit

[复制链接]
楼主: 喜悦
发表于 2025-3-26 23:15:59 | 显示全部楼层
CenDerNet: Center and Curvature Representations for Render-and-Compare 6D Pose Estimationers; Third, 6D object poses are estimated using 3D centers and curvature heatmaps. By jointly optimizing poses across views using a render-and-compare approach, our method naturally handles occlusions and object symmetries. We show that CenDerNet outperforms previous methods on two industry-relevant datasets: DIMO and T-LESS.
发表于 2025-3-27 02:54:08 | 显示全部楼层
发表于 2025-3-27 06:45:21 | 显示全部楼层
YORO - Lightweight End to End Visual Groundingan object referred via natural language. Unlike the recent trend in the literature of using multi-stage approaches that sacrifice speed for accuracy, YORO seeks a better trade-off between speed an accuracy by embracing a single-stage design, without CNN backbone. YORO consumes natural language queri
发表于 2025-3-27 11:32:22 | 显示全部楼层
Localization Uncertainty Estimation for Anchor-Free Object Detectionete data, it is desirable for object detectors to take the localization uncertainty into account. However, there are several limitations of the existing uncertainty estimation methods for anchor-based object detection. 1) They model the uncertainty of the heterogeneous object properties with differe
发表于 2025-3-27 15:32:46 | 显示全部楼层
Variational Depth Networks: Uncertainty-Aware Monocular Self-supervised Depth Estimationthey are susceptible to input ambiguities and it is therefore important to express the corresponding depth uncertainty. While there are a few truly monocular and self-supervised methods modelling uncertainty, none correlates well with errors in depth. To this end we present Variational Depth Network
发表于 2025-3-27 21:31:31 | 显示全部楼层
Unsupervised Joint Image Transfer and Uncertainty Quantification Using Patch Invariant Networksundant. To ensure a structure-preserving mapping from the input to the target domain, existing methods for unpaired image transfer are commonly based on cycle-consistency, causing additional computational resources and instability due to the learning of an inverse mapping. This paper presents a nove
发表于 2025-3-27 22:22:44 | 显示全部楼层
发表于 2025-3-28 02:10:24 | 显示全部楼层
发表于 2025-3-28 08:43:45 | 显示全部楼层
Trans6D: Transformer-Based 6D Object Pose Estimation and Refinementl network (CNN)-based methods have made remarkable progress, they are not efficient in capturing global dependencies and often suffer from information loss due to downsampling operations. To extract robust feature representation, we propose a Transformer-based 6D object pose estimation approach (Tra
发表于 2025-3-28 11:14:57 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-6 00:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表