找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[复制链接]
楼主: COAX
发表于 2025-3-28 18:12:45 | 显示全部楼层
发表于 2025-3-28 22:37:12 | 显示全部楼层
J. Harvey B.Sc. (Econ.), Dip. Ed. (Oxford)ied unknown classes. However, it cannot distinguish unknown instances as multiple unknown classes. In this work, we propose a novel OWOD problem called Unknown-Classified Open World Object Detection (UC-OWOD). UC-OWOD aims to detect unknown instances and classify them into different unknown classes.
发表于 2025-3-29 01:41:14 | 显示全部楼层
Alessandro Cigno,Furio C. Rosatipresent its knowledge: as a global 3D grid of features and an array of view-specific 2D grids. We progressively exchange information between the two with a dedicated bidirectional attention mechanism. We exploit knowledge about the image formation process to significantly sparsify the attention weig
发表于 2025-3-29 03:07:55 | 显示全部楼层
发表于 2025-3-29 08:47:34 | 显示全部楼层
Alain de Crombrugghe,Louis Geversource-consuming, and depending only on supervised learning limits the applicability of trained models. Self-supervised training strategies can alleviate these issues by learning a general point cloud backbone model for downstream 3D vision tasks. Against this backdrop, we show the relationship betwe
发表于 2025-3-29 14:30:48 | 显示全部楼层
发表于 2025-3-29 19:31:42 | 显示全部楼层
发表于 2025-3-29 21:49:28 | 显示全部楼层
发表于 2025-3-30 00:16:31 | 显示全部楼层
L. V. Kantorovich,V. L. Makarov, existing efforts mainly focus on improving matching accuracy while ignoring its efficiency, which is crucial for real-world applications. In this paper, we propose an efficient structure named Efficient Correspondence Transformer (.) by finding correspondences in a coarse-to-fine manner, which sig
发表于 2025-3-30 07:04:02 | 显示全部楼层
https://doi.org/10.1007/978-3-031-20080-9Computer Science; Informatics; Conference Proceedings; Research; Applications
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 23:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表