找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[复制链接]
楼主: Confer
发表于 2025-3-28 16:42:15 | 显示全部楼层
发表于 2025-3-28 21:18:54 | 显示全部楼层
发表于 2025-3-29 01:26:20 | 显示全部楼层
发表于 2025-3-29 05:56:06 | 显示全部楼层
发表于 2025-3-29 08:41:01 | 显示全部楼层
发表于 2025-3-29 14:52:14 | 显示全部楼层
Deep Image Clustering with Category-Style Representation, propose a novel deep image clustering framework to learn a category-style latent representation in which the category information is disentangled from image style and can be directly used as the cluster assignment. To achieve this goal, mutual information maximization is applied to embed relevant i
发表于 2025-3-29 17:42:25 | 显示全部楼层
发表于 2025-3-29 22:16:18 | 显示全部楼层
Improving Monocular Depth Estimation by Leveraging Structural Awareness and Complementary Datasets,tructural information exploitation, which leads to inaccurate spatial layout, discontinuous surface, and ambiguous boundaries. In this paper, we tackle this problem in three aspects. First, to exploit the spatial relationship of visual features, we propose a structure-aware neural network with spati
发表于 2025-3-30 01:19:23 | 显示全部楼层
BMBC: Bilateral Motion Estimation with Bilateral Cost Volume for Video Interpolation,se a novel deep-learning-based video interpolation algorithm based on bilateral motion estimation. First, we develop the bilateral motion network with the bilateral cost volume to estimate bilateral motions accurately. Then, we approximate bi-directional motions to predict a different kind of bilate
发表于 2025-3-30 08:05:16 | 显示全部楼层
Hard Negative Examples are Hard, but Useful,ser together in an embedding space than representations of images from different classes. Much work on triplet losses focuses on selecting the most useful triplets of images to consider, with strategies that select dissimilar examples from the same class or similar examples from different classes. T
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 21:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表