找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur

[复制链接]
查看: 34739|回复: 65
发表于 2025-3-21 19:28:55 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2020
副标题16th European Confer
编辑Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2020; 16th European Confer Andrea Vedaldi,Horst Bischof,Jan-Michael Frahm Conference proceedings 2020 Springer Natur
描述The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic..The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.. .. .
出版日期Conference proceedings 2020
关键词computer networks; computer vision; data security; databases; face recognition; Human-Computer Interactio
版次1
doihttps://doi.org/10.1007/978-3-030-58568-6
isbn_softcover978-3-030-58567-9
isbn_ebook978-3-030-58568-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Computer Vision – ECCV 2020影响因子(影响力)




书目名称Computer Vision – ECCV 2020影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2020网络公开度




书目名称Computer Vision – ECCV 2020网络公开度学科排名




书目名称Computer Vision – ECCV 2020被引频次




书目名称Computer Vision – ECCV 2020被引频次学科排名




书目名称Computer Vision – ECCV 2020年度引用




书目名称Computer Vision – ECCV 2020年度引用学科排名




书目名称Computer Vision – ECCV 2020读者反馈




书目名称Computer Vision – ECCV 2020读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:59:21 | 显示全部楼层
发表于 2025-3-22 03:14:54 | 显示全部楼层
Marek Dabrowski,Jacek Rostowskid-background sub-task. Extensive experiments conducted with three popular datasets (i.e., Pascal VOC, Cityscapes and COCO) have demonstrated the effectiveness of our method in a wide range of noisy class labels scenarios. Code will be available at: ..
发表于 2025-3-22 08:10:18 | 显示全部楼层
Uneven Growth in a Monetary Union,he effectiveness of our proposed motion representation method on downstream video understanding tasks, ...., action recognition task. Experimental results show that our method performs favorably against state-of-the-art methods.
发表于 2025-3-22 12:46:59 | 显示全部楼层
发表于 2025-3-22 16:06:45 | 显示全部楼层
Life, Hardship and Death at the Front,hard negative examples becomes feasible. This leads to more generalizable features, and image retrieval results that outperform state of the art for datasets with high intra-class variance. Code is available at: .
发表于 2025-3-22 19:57:43 | 显示全部楼层
发表于 2025-3-22 23:24:36 | 显示全部楼层
Paola Malanotte-Rizzoli,Valery N. Eremeevose loss functions that carefully integrate partial but correct annotations with complementary but noisy pseudo labels. Evaluation in the proposed novel setting requires full annotation on the test set. We collect the required annotations (Project page: . This work was part of Xiangyun Zhao’s intern
发表于 2025-3-23 05:18:53 | 显示全部楼层
发表于 2025-3-23 06:39:03 | 显示全部楼层
Xing Xu,Helena Hing Wa Sit,Shen Chene: one synthesizes features of unseen classes/categories, while the other optimizes the embedding and performs the cross-modal alignment on the common embedding space. Specifically, two different types of generative adversarial networks learn collaboratively throughout the training process and the i
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 21:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表