找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[复制链接]
楼主: Chylomicron
发表于 2025-3-26 23:17:11 | 显示全部楼层
发表于 2025-3-27 04:16:43 | 显示全部楼层
发表于 2025-3-27 09:10:15 | 显示全部楼层
发表于 2025-3-27 11:48:45 | 显示全部楼层
0302-9743 missions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions..978-3-030-01239-7978-3-030-01240-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-27 15:59:52 | 显示全部楼层
发表于 2025-3-27 19:40:56 | 显示全部楼层
The Trade and Cooperation Agreement,rly exploit the information from the previous stage, an adaptive fusion block is devised to learn a dynamic integration of the current stage’s output and the previous stage’s output. Experiments on multiple datasets demonstrate that our proposed approach can improve the translation quality compared with previous single-stage unsupervised methods.
发表于 2025-3-28 00:21:19 | 显示全部楼层
The EU, ASEAN and Interregionalism clip for each sentence in the query with the help of a focusing guide. These levels are complementary – the top-level matching narrows the search while the part-level localization refines the results. On both ActivityNet Captions and modified LSMDC datasets, the proposed framework achieves remarkable performance gains (Project Page: .).
发表于 2025-3-28 05:30:33 | 显示全部楼层
GeoDesc: Learning Local Descriptors by Integrating Geometry Constraintsidelines towards practical integration of learned descriptors in Structure-from-Motion (SfM) pipelines, showing the good trade-off that GeoDesc delivers to 3D reconstruction tasks between accuracy and efficiency.
发表于 2025-3-28 06:40:11 | 显示全部楼层
发表于 2025-3-28 13:56:45 | 显示全部楼层
Find and Focus: Retrieve and Localize Video Events with Natural Language Queries clip for each sentence in the query with the help of a focusing guide. These levels are complementary – the top-level matching narrows the search while the part-level localization refines the results. On both ActivityNet Captions and modified LSMDC datasets, the proposed framework achieves remarkable performance gains (Project Page: .).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-16 17:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表