找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[复制链接]
查看: 6055|回复: 58
发表于 2025-3-21 17:32:34 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2018
副标题15th European Confer
编辑Vittorio Ferrari,Martial Hebert,Yair Weiss
视频videohttp://file.papertrans.cn/235/234197/234197.mp4
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw
描述The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions..
出版日期Conference proceedings 2018
关键词artificial intelligence; clustering; computer vision; face recognition; image classification; image proce
版次1
doihttps://doi.org/10.1007/978-3-030-01240-3
isbn_softcover978-3-030-01239-7
isbn_ebook978-3-030-01240-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Computer Vision – ECCV 2018影响因子(影响力)




书目名称Computer Vision – ECCV 2018影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2018网络公开度




书目名称Computer Vision – ECCV 2018网络公开度学科排名




书目名称Computer Vision – ECCV 2018被引频次




书目名称Computer Vision – ECCV 2018被引频次学科排名




书目名称Computer Vision – ECCV 2018年度引用




书目名称Computer Vision – ECCV 2018年度引用学科排名




书目名称Computer Vision – ECCV 2018读者反馈




书目名称Computer Vision – ECCV 2018读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:08:50 | 显示全部楼层
Ask, Acquire, and Attack: Data-Free UAP Generation Using Class Impressionsodel is a generic representation (in the input space) of the samples belonging to that category. Further, we present a neural network based generative model that utilizes the acquired class impressions to learn crafting UAPs. Experimental evaluation demonstrates that the learned generative model, (i
发表于 2025-3-22 01:42:36 | 显示全部楼层
Rendering Portraitures from Monocular Camera and Beyondth the refined estimation, we conduct depth and segmentation-aware blur rendering to the input image with a Conditional Random Field and image matting. In addition, we train a spatially-variant Recursive Neural Network to learn and accelerate this rendering process. We show that the proposed algorit
发表于 2025-3-22 06:13:51 | 显示全部楼层
发表于 2025-3-22 09:33:40 | 显示全部楼层
A Scalable Exemplar-Based Subspace Clustering Algorithm for Class-Imbalanced Data from each subspace for expressing all data points even if the data are imbalanced. Our experiments demonstrate that the proposed method outperforms state-of-the-art subspace clustering methods in two large-scale image datasets that are imbalanced. We also demonstrate the effectiveness of our method
发表于 2025-3-22 16:14:54 | 显示全部楼层
RCAA: Relational Context-Aware Agents for Person Searchch, we conduct extensive experiments on the large-scale Person Search benchmark dataset and achieve significant improvements over the compared approaches. It is also worth noting that the proposed model even performs better than traditional methods with perfect pedestrian detectors.
发表于 2025-3-22 19:16:40 | 显示全部楼层
Distractor-Aware Siamese Networks for Visual Object Trackingorm incremental learning, which can effectively transfer the general embedding to the current video domain. In addition, we extend the proposed approach for long-term tracking by introducing a simple yet effective local-to-global search region strategy. Extensive experiments on benchmarks show that
发表于 2025-3-22 23:58:41 | 显示全部楼层
发表于 2025-3-23 05:26:14 | 显示全部楼层
Learning Dynamic Memory Networks for Object Trackingine with the initial template. Unlike tracking-by-detection methods where the object’s information is maintained by the weight parameters of neural networks, which requires expensive online fine-tuning to be adaptable, our tracker runs completely feed-forward and adapts to the target’s appearance ch
发表于 2025-3-23 07:21:10 | 显示全部楼层
Face Super-Resolution Guided by Facial Component Heatmapslarity), but also middle-level information (., face structure) to further explore spatial constraints of facial components from LR inputs images. Therefore, we are able to super-resolve very small unaligned face images . with a large upscaling factor of 8., while preserving face structure. Extensive
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-16 19:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表