找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[复制链接]
楼主: Fuctionary
发表于 2025-3-28 16:51:05 | 显示全部楼层
发表于 2025-3-28 19:46:04 | 显示全部楼层
发表于 2025-3-29 01:14:23 | 显示全部楼层
Shift-Net: Image Inpainting via Deep Feature Rearrangementature in missing region can be used to guide the shift of encoder feature in known region. An end-to-end learning algorithm is further developed to train the Shift-Net. Experiments on the Paris StreetView and Places datasets demonstrate the efficiency and effectiveness of our Shift-Net in producing
发表于 2025-3-29 03:42:22 | 显示全部楼层
发表于 2025-3-29 09:31:18 | 显示全部楼层
Modular Generative Adversarial Networksains, and then combined to construct specific GAN networks at test time, according to the specific image translation task. This leads to ModularGAN’s superior flexibility of generating (or translating to) an image in any desired domain. Experimental results demonstrate that our model not only presen
发表于 2025-3-29 12:03:50 | 显示全部楼层
发表于 2025-3-29 15:37:51 | 显示全部楼层
Single Image Intrinsic Decomposition Without a Single Intrinsic Imageam module that performs intrinsic decomposition on a single input image. We demonstrate the effectiveness of our framework through extensive experimental study on both synthetic and real-world datasets, showing superior performance over previous approaches in both single-image and multi-image settin
发表于 2025-3-29 22:40:15 | 显示全部楼层
PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric stem achieves COCO test-dev keypoint average precision of 0.665 using single-scale inference and 0.687 using multi-scale inference, significantly outperforming all previous bottom-up pose estimation systems. We are also the first bottom-up method to report competitive results for the person class in
发表于 2025-3-30 01:00:58 | 显示全部楼层
发表于 2025-3-30 04:29:05 | 显示全部楼层
The dynamic context of employee relationsature in missing region can be used to guide the shift of encoder feature in known region. An end-to-end learning algorithm is further developed to train the Shift-Net. Experiments on the Paris StreetView and Places datasets demonstrate the efficiency and effectiveness of our Shift-Net in producing
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 04:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表