找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[复制链接]
查看: 13147|回复: 62
发表于 2025-3-21 16:53:53 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2018
副标题15th European Confer
编辑Vittorio Ferrari,Martial Hebert,Yair Weiss
视频videohttp://file.papertrans.cn/235/234186/234186.mp4
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw
描述The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions..
出版日期Conference proceedings 2018
关键词3D; artificial intelligence; computer vision; image coding; image processing; image reconstruction; image
版次1
doihttps://doi.org/10.1007/978-3-030-01264-9
isbn_softcover978-3-030-01263-2
isbn_ebook978-3-030-01264-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Computer Vision – ECCV 2018影响因子(影响力)




书目名称Computer Vision – ECCV 2018影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2018网络公开度




书目名称Computer Vision – ECCV 2018网络公开度学科排名




书目名称Computer Vision – ECCV 2018被引频次




书目名称Computer Vision – ECCV 2018被引频次学科排名




书目名称Computer Vision – ECCV 2018年度引用




书目名称Computer Vision – ECCV 2018年度引用学科排名




书目名称Computer Vision – ECCV 2018读者反馈




书目名称Computer Vision – ECCV 2018读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:19:27 | 显示全部楼层
The Dynamics of Employee Relations-based paradigm, more traditional boundary-based methods such as Intelligent Scissor are still popular in practice as they allow users to have active control of the object boundaries. Existing methods for boundary-based segmentation solely rely on low-level image features, such as edges for boundary
发表于 2025-3-22 04:17:45 | 显示全部楼层
https://doi.org/10.1007/978-1-349-14314-6photons scattered by the body as noise or disturbance to be disposed of, either by acquisition hardware (an anti-scatter grid) or by the reconstruction software. This increases the radiation dose delivered to the patient. Treating these scattered photons as a source of information, we solve an inver
发表于 2025-3-22 06:19:34 | 显示全部楼层
发表于 2025-3-22 12:05:41 | 显示全部楼层
Valeria Costantini,Massimiliano Mazzantil max/average pooling layer between the convolution and fully-connected layers to retain translation invariance and shape preserving (aware of shape difference) properties based on the shift theorem of the Fourier transform. Thanks to the ability to handle image misalignment while keeping important
发表于 2025-3-22 13:41:44 | 显示全部楼层
https://doi.org/10.1007/978-94-007-5089-0, speed, also depends on the other factors such as memory access cost and platform characterics. Thus, this work proposes to evaluate the direct metric on the target platform, beyond only considering FLOPs. Based on a series of controlled experiments, this work derives several practical . for effici
发表于 2025-3-22 17:51:26 | 显示全部楼层
Carbon Leakage and Trade Adjustment Policiesadapt it to the end-to-end training of visual features on large-scale datasets. In this work, we present DeepCluster, a clustering method that jointly learns the parameters of a neural network and the cluster assignments of the resulting features. DeepCluster iteratively groups the features with a s
发表于 2025-3-22 22:51:03 | 显示全部楼层
发表于 2025-3-23 05:19:51 | 显示全部楼层
发表于 2025-3-23 09:19:56 | 显示全部楼层
https://doi.org/10.1007/978-94-015-0945-9understandings. Data-driven approaches, such as deep neural networks, can deal with the ambiguity inherent in this task to some extent, but it is extremely expensive to acquire the temporal annotations of a large-scale video dataset. To leverage the plentiful web-crawled videos to improve the perfor
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 04:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表