找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw

[复制链接]
查看: 8887|回复: 57
发表于 2025-3-21 16:33:15 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2018
副标题15th European Confer
编辑Vittorio Ferrari,Martial Hebert,Yair Weiss
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2018; 15th European Confer Vittorio Ferrari,Martial Hebert,Yair Weiss Conference proceedings 2018 Springer Nature Sw
描述The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018..The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions..
出版日期Conference proceedings 2018
关键词3D; artificial intelligence; image coding; image processing; image reconstruction; image segmentation; ima
版次1
doihttps://doi.org/10.1007/978-3-030-01270-0
isbn_softcover978-3-030-01269-4
isbn_ebook978-3-030-01270-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Computer Vision – ECCV 2018影响因子(影响力)




书目名称Computer Vision – ECCV 2018影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2018网络公开度




书目名称Computer Vision – ECCV 2018网络公开度学科排名




书目名称Computer Vision – ECCV 2018被引频次




书目名称Computer Vision – ECCV 2018被引频次学科排名




书目名称Computer Vision – ECCV 2018年度引用




书目名称Computer Vision – ECCV 2018年度引用学科排名




书目名称Computer Vision – ECCV 2018读者反馈




书目名称Computer Vision – ECCV 2018读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:04:23 | 显示全部楼层
发表于 2025-3-22 01:08:57 | 显示全部楼层
Look Before You Leap: Bridging Model-Free and Model-Based Reinforcement Learning for Planned-Ahead V in synthetic environments. However, model-free DRL models do not consider the dynamics in the real-world environments, and they often fail to generalize to new scenes. In this paper, we take a radical approach to bridge the gap between synthetic studies and real-world practices—We propose a novel,
发表于 2025-3-22 07:52:55 | 显示全部楼层
Improving Deep Visual Representation for Person Re-identification by Global and Local Image-languageverse auxiliary information has been utilized to improve the visual feature learning. In this paper, we propose to exploit natural language description as additional training supervisions for effective visual features. Compared with other auxiliary information, language can describe a specific perso
发表于 2025-3-22 10:04:29 | 显示全部楼层
Learning 3D Shapes as Multi-layered Height-Maps Using 2D Convolutional NetworksLH) where at each grid location, we store multiple instances of height maps, thereby representing 3D shape detail that is hidden behind several layers of occlusion. We provide a novel view merging method for combining view dependent information (Eg. MLH descriptors) from multiple views. Because of t
发表于 2025-3-22 14:02:20 | 显示全部楼层
A Geometric Perspective on Structured Light CodingHamiltonian SL coding, a novel family of SL coding schemes that can recover 3D shape with high precision, with only a small number (as few as three) of images. We establish structural similarity between popular discrete (binary) SL coding methods, and Hamiltonian coding, which is a continuous coding
发表于 2025-3-22 20:14:46 | 显示全部楼层
发表于 2025-3-22 21:44:53 | 显示全部楼层
发表于 2025-3-23 01:52:23 | 显示全部楼层
Super-Resolution and Sparse View CT Reconstructionedded in 3D volumes. To reconstruct such structures at resolutions below the Nyquist limit of the CT image sensor, we devise a new 3D structure tensor prior, which can be incorporated as a regularizer into more traditional proximal optimization methods for CT reconstruction. As a second, smaller con
发表于 2025-3-23 05:48:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 16:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表