找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2016; 14th European Confer Bastian Leibe,Jiri Matas,Max Welling Conference proceedings 2016 Springer International P

[复制链接]
楼主: 传家宝
发表于 2025-3-30 11:32:11 | 显示全部楼层
发表于 2025-3-30 14:47:19 | 显示全部楼层
Visual Motif Discovery via First-Person Visionnd that of a familiar social situation such as when interacting with a clerk at a store. The goal of this study is to discover visual motifs from a collection of first-person videos recorded by a wearable camera. To achieve this goal, we develop a commonality clustering method that leverages three i
发表于 2025-3-30 17:51:34 | 显示全部楼层
发表于 2025-3-30 23:22:59 | 显示全部楼层
Fundamental Matrices from Moving Objects Using Line Motion Barcodesd it is difficult to find corresponding feature points. Prior methods searched for corresponding epipolar lines using points on the convex hull of the silhouette of a single moving object. These methods fail when the scene includes multiple moving objects. This paper extends previous work to scenes
发表于 2025-3-31 04:26:38 | 显示全部楼层
发表于 2025-3-31 08:05:04 | 显示全部楼层
发表于 2025-3-31 12:23:54 | 显示全部楼层
Leveraging Visual Question Answering for Image-Caption Rankingcurate answer. In this work we view VQA as a “feature extraction” module to extract image and caption representations. We employ these representations for the task of image-caption ranking. Each feature dimension captures (imagines) whether a fact (question-answer pair) could plausibly be true for t
发表于 2025-3-31 16:19:47 | 显示全部楼层
DAVE: A Unified Framework for Fast Vehicle Detection and Annotationn this paper, we present a fast framework of Detection and Annotation for Vehicles (DAVE), which effectively combines vehicle detection and attributes annotation. DAVE consists of two convolutional neural networks (CNNs): a fast vehicle proposal network (FVPN) for vehicle-like objects extraction and
发表于 2025-3-31 20:19:44 | 显示全部楼层
发表于 2025-3-31 21:52:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 09:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表