找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2012; 12th European Confer Andrew Fitzgibbon,Svetlana Lazebnik,Cordelia Schmi Conference proceedings 2012 Springer-V

[复制链接]
查看: 33634|回复: 66
发表于 2025-3-21 18:15:21 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2012
副标题12th European Confer
编辑Andrew Fitzgibbon,Svetlana Lazebnik,Cordelia Schmi
视频video
概述Up to date results.State of the art research.Fast track conference proceedings
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2012; 12th European Confer Andrew Fitzgibbon,Svetlana Lazebnik,Cordelia Schmi Conference proceedings 2012 Springer-V
描述The seven-volume set comprising LNCS volumes 7572-7578 constitutes the refereed proceedings of the 12th European Conference on Computer Vision, ECCV 2012, held in Florence, Italy, in October 2012. The 408 revised papers presented were carefully reviewed and selected from 1437 submissions. The papers are organized in topical sections on geometry, 2D and 3D shapes, 3D reconstruction, visual recognition and classification, visual features and image matching, visual monitoring: action and activities, models, optimisation, learning, visual tracking and image registration, photometry: lighting and colour, and image segmentation.
出版日期Conference proceedings 2012
关键词Markov random fields; activity recognition; machine learning; object directors; saliency models; algorith
版次1
doihttps://doi.org/10.1007/978-3-642-33783-3
isbn_softcover978-3-642-33782-6
isbn_ebook978-3-642-33783-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

书目名称Computer Vision – ECCV 2012影响因子(影响力)




书目名称Computer Vision – ECCV 2012影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2012网络公开度




书目名称Computer Vision – ECCV 2012网络公开度学科排名




书目名称Computer Vision – ECCV 2012被引频次




书目名称Computer Vision – ECCV 2012被引频次学科排名




书目名称Computer Vision – ECCV 2012年度引用




书目名称Computer Vision – ECCV 2012年度引用学科排名




书目名称Computer Vision – ECCV 2012读者反馈




书目名称Computer Vision – ECCV 2012读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:03:37 | 显示全部楼层
发表于 2025-3-22 01:00:53 | 显示全部楼层
发表于 2025-3-22 06:15:07 | 显示全部楼层
https://doi.org/10.1007/978-1-349-01488-0ations and relative scores between pairs of detections are considered as sets of unordered items. Directly training classification models on sets of unordered items, where each set can have varying cardinality can be difficult. In order to overcome this problem, we propose SetBoost, a discriminative
发表于 2025-3-22 11:21:44 | 显示全部楼层
The Directory of Museums & Living Displaysn the last two decades, the problem of recognizing facial images across aging remains an open problem. In this paper, we propose a relative craniofacial growth model which is based on the science of craniofacial anthropometry. Compared to the traditional craniofacial growth model, the proposed metho
发表于 2025-3-22 13:50:52 | 显示全部楼层
发表于 2025-3-22 17:39:00 | 显示全部楼层
https://doi.org/10.1007/978-3-642-24415-5ing images as the supervising information to guide the generation of random trees, thus enabling the retrieved nearest neighbor images not only visually alike but also semantically related. Secondly, different from conventional decision tree methods, which fuse the information contained at each leaf
发表于 2025-3-23 00:59:09 | 显示全部楼层
发表于 2025-3-23 03:18:05 | 显示全部楼层
Exceptional sets on the boundary,wishing to achieve good results. While a mixture of linear classifiers is capable of modelling this non-linearity, learning this mixture from weakly annotated data is non-trivial and is the paper’s focus. Our approach is to identify the modes in the distribution of our positive examples by clusterin
发表于 2025-3-23 07:18:17 | 显示全部楼层
The Disabled Body in Contemporary Artsuch queries is “car on the road”. Existing image retrieval systems typically consider queries consisting of object classes (i.e. keywords). They train a separate classifier for each object class and combine the output heuristically. In contrast, we develop a learning framework to jointly consider o
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 18:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表