找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision -- ECCV 2006; 9th European Confere Aleš Leonardis,Horst Bischof,Axel Pinz Conference proceedings 2006 Springer-Verlag Berli

[复制链接]
查看: 40987|回复: 36
发表于 2025-3-21 17:33:40 | 显示全部楼层 |阅读模式
书目名称Computer Vision -- ECCV 2006
副标题9th European Confere
编辑Aleš Leonardis,Horst Bischof,Axel Pinz
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision -- ECCV 2006; 9th European Confere Aleš Leonardis,Horst Bischof,Axel Pinz Conference proceedings 2006 Springer-Verlag Berli
出版日期Conference proceedings 2006
关键词3D reconstruction; Bayesian inference; Fuzzy; Stereo; algorithms; classification; computer vision; face rec
版次1
doihttps://doi.org/10.1007/11744023
isbn_softcover978-3-540-33832-1
isbn_ebook978-3-540-33833-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

书目名称Computer Vision -- ECCV 2006影响因子(影响力)




书目名称Computer Vision -- ECCV 2006影响因子(影响力)学科排名




书目名称Computer Vision -- ECCV 2006网络公开度




书目名称Computer Vision -- ECCV 2006网络公开度学科排名




书目名称Computer Vision -- ECCV 2006被引频次




书目名称Computer Vision -- ECCV 2006被引频次学科排名




书目名称Computer Vision -- ECCV 2006年度引用




书目名称Computer Vision -- ECCV 2006年度引用学科排名




书目名称Computer Vision -- ECCV 2006读者反馈




书目名称Computer Vision -- ECCV 2006读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:03:59 | 显示全部楼层
Weakly Supervised Learning of Part-Based Spatial Models for Visual Object Recognitionon about class membership (and not object location or configuration). This method learns both a model of local part appearance and a model of the spatial relations between those parts. In contrast, other work using such a weakly supervised learning paradigm has not considered the problem of simultan
发表于 2025-3-22 03:59:29 | 显示全部楼层
Hyperfeatures – Multilevel Local Coding for Visual Recognitionto local occlusions and to geometric and photometric variations, but they are not able to exploit spatial co-occurrence statistics at scales larger than their local input patches. We present a new multilevel visual representation, ‘hyperfeatures’, that is designed to remedy this. The starting point
发表于 2025-3-22 05:43:15 | 显示全部楼层
Riemannian Manifold Learning for Nonlinear Dimensionality Reductionce. We propose an efficient algorithm called Riemannian manifold learning (RML). A Riemannian manifold can be constructed in the form of a simplicial complex, and thus its intrinsic dimension can be reliably estimated. Then the NLDR problem is solved by constructing Riemannian normal coordinates (RN
发表于 2025-3-22 09:29:49 | 显示全部楼层
发表于 2025-3-22 14:20:32 | 显示全部楼层
Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusiontion structure and present a novel perspective revealing the two key factors in information utilization: class-relevance and redundancy. We derive a new information decomposition model where a novel concept called class-relevant redundancy is introduced. Subsequently a new algorithm called Condition
发表于 2025-3-22 18:05:23 | 显示全部楼层
发表于 2025-3-23 01:13:42 | 显示全部楼层
发表于 2025-3-23 05:21:18 | 显示全部楼层
Riemannian Manifold Learning for Nonlinear Dimensionality Reductioncomplex, and thus its intrinsic dimension can be reliably estimated. Then the NLDR problem is solved by constructing Riemannian normal coordinates (RNC). Experimental results demonstrate that our algorithm can learn the data’s intrinsic geometric structure, yielding uniformly distributed and well organized low-dimensional embedding data.
发表于 2025-3-23 05:41:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-6 11:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表