找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ACCV 2022; 16th Asian Conferenc Lei Wang,Juergen Gall,Rama Chellappa Conference proceedings 2023 The Editor(s) (if applic

[复制链接]
查看: 43821|回复: 58
发表于 2025-3-21 16:54:25 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ACCV 2022
副标题16th Asian Conferenc
编辑Lei Wang,Juergen Gall,Rama Chellappa
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ACCV 2022; 16th Asian Conferenc Lei Wang,Juergen Gall,Rama Chellappa Conference proceedings 2023 The Editor(s) (if applic
描述.The 7-volume set of LNCS 13841-13847 constitutes the proceedings of the 16th Asian Conference on Computer Vision, ACCV 2022, held in Macao, China, December 2022...The total of 277 contributions included in the proceedings set was carefully reviewed and selected from 836 submissions during two rounds of reviewing and improvement. The papers focus on the following topics:..Part I: 3D computer vision; optimization methods;.Part II: applications of computer vision, vision for X; computational photography, sensing, and display;..Part III: low-level vision, image processing; ..Part IV: face and gesture; pose and action; video analysis and event recognition; vision and language; biometrics;..Part V: recognition: feature detection, indexing, matching, and shape representation; datasets and performance analysis;.Part VI: biomedical image analysis; deep learning for computer vision; ..Part VII: generative models for computer vision; segmentation and grouping; motion and tracking; document image analysis; big data, large scale methods..
出版日期Conference proceedings 2023
关键词3D; 3d object; artificial intelligence; computer hardware; computer networks; computer vision; education; e
版次1
doihttps://doi.org/10.1007/978-3-031-26319-4
isbn_softcover978-3-031-26318-7
isbn_ebook978-3-031-26319-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Computer Vision – ACCV 2022影响因子(影响力)




书目名称Computer Vision – ACCV 2022影响因子(影响力)学科排名




书目名称Computer Vision – ACCV 2022网络公开度




书目名称Computer Vision – ACCV 2022网络公开度学科排名




书目名称Computer Vision – ACCV 2022被引频次




书目名称Computer Vision – ACCV 2022被引频次学科排名




书目名称Computer Vision – ACCV 2022年度引用




书目名称Computer Vision – ACCV 2022年度引用学科排名




书目名称Computer Vision – ACCV 2022读者反馈




书目名称Computer Vision – ACCV 2022读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:17:35 | 显示全部楼层
Temporal-Aware Siamese Tracker: Integrate Temporal Context for 3D Object Trackingnt Siamese trackers focus on aggregating the target information from the latest template into the search area for target-specific feature construction, which presents the limited performance in the case of object occlusion or object missing. To this end, in this paper, we propose a novel temporal-aw
发表于 2025-3-22 03:53:22 | 显示全部楼层
发表于 2025-3-22 05:26:32 | 显示全部楼层
发表于 2025-3-22 12:20:34 | 显示全部楼层
NEO-3DF: Novel Editing-Oriented 3D Face Creation and Reconstruction user might wish to edit the reconstructed 3D face, but 3D face editing has seldom been studied. This paper presents such method and shows that reconstruction and editing can help each other. In the presented framework named NEO-3DF, the 3D face model we propose has independent sub-models correspond
发表于 2025-3-22 13:54:01 | 显示全部楼层
LSMD-Net: LiDAR-Stereo Fusion with Mixture Density Network for Depth Sensinghe stereo camera sensor can provide dense depth prediction but underperforms in texture-less, repetitive and occlusion areas while the LiDAR sensor can generate accurate measurements but results in sparse map. In this paper, we advocate to fuse LiDAR and stereo camera for accurate dense depth sensin
发表于 2025-3-22 20:51:44 | 显示全部楼层
Point Cloud Upsampling via Cascaded Refinement Network by carefully designing a single-stage network, which makes it still challenging to generate a high-fidelity point distribution. Instead, upsampling point cloud in a coarse-to-fine manner is a decent solution. However, existing coarse-to-fine upsampling methods require extra training strategies, whi
发表于 2025-3-22 23:58:35 | 显示全部楼层
发表于 2025-3-23 03:41:42 | 显示全部楼层
Vectorizing Building Blueprintslueprint. A state-of-the-art floorplan vectorization algorithm starts by detecting corners, whose process does not scale to high-definition floorplans with thin interior walls, small door frames, and long exterior walls. Our approach 1) obtains rough semantic segmentation by running off-the-shelf se
发表于 2025-3-23 06:22:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 12:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表