找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ACCV 2022; 16th Asian Conferenc Lei Wang,Juergen Gall,Rama Chellappa Conference proceedings 2023 The Editor(s) (if applic

[复制链接]
查看: 48728|回复: 59
发表于 2025-3-21 20:02:16 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ACCV 2022
副标题16th Asian Conferenc
编辑Lei Wang,Juergen Gall,Rama Chellappa
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ACCV 2022; 16th Asian Conferenc Lei Wang,Juergen Gall,Rama Chellappa Conference proceedings 2023 The Editor(s) (if applic
描述.The 7-volume set of LNCS 13841-13847 constitutes the proceedings of the 16th Asian Conference on Computer Vision, ACCV 2022, held in Macao, China, December 2022...The total of 277 contributions included in the proceedings set was carefully reviewed and selected from 836 submissions during two rounds of reviewing and improvement. The papers focus on the following topics:..Part I: 3D computer vision; optimization methods;.Part II: applications of computer vision, vision for X; computational photography, sensing, and display;..Part III: low-level vision, image processing; ..Part IV: face and gesture; pose and action; video analysis and event recognition; vision and language; biometrics;..Part V: recognition: feature detection, indexing, matching, and shape representation; datasets and performance analysis;.Part VI: biomedical image analysis; deep learning for computer vision; ..Part VII: generative models for computer vision; segmentation and grouping; motion and tracking; document image analysis; big data, large scale methods. .
出版日期Conference proceedings 2023
关键词computer vision; image processing; artificial intelligence; machine learning; image analysis; pattern rec
版次1
doihttps://doi.org/10.1007/978-3-031-26316-3
isbn_softcover978-3-031-26315-6
isbn_ebook978-3-031-26316-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Computer Vision – ACCV 2022影响因子(影响力)




书目名称Computer Vision – ACCV 2022影响因子(影响力)学科排名




书目名称Computer Vision – ACCV 2022网络公开度




书目名称Computer Vision – ACCV 2022网络公开度学科排名




书目名称Computer Vision – ACCV 2022被引频次




书目名称Computer Vision – ACCV 2022被引频次学科排名




书目名称Computer Vision – ACCV 2022年度引用




书目名称Computer Vision – ACCV 2022年度引用学科排名




书目名称Computer Vision – ACCV 2022读者反馈




书目名称Computer Vision – ACCV 2022读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:53:02 | 显示全部楼层
Exposing Face Forgery Clues via Retinex-Based Image Enhancementthe RGB feature extractor to concentrate more on forgery traces from an MSR perspective. The feature re-weighted interaction module implicitly learns the correlation between the two complementary modalities to promote feature learning for each other. Comprehensive experiments on several benchmarks s
发表于 2025-3-22 03:00:34 | 显示全部楼层
发表于 2025-3-22 06:40:47 | 显示全部楼层
发表于 2025-3-22 10:37:53 | 显示全部楼层
发表于 2025-3-22 16:41:01 | 显示全部楼层
发表于 2025-3-22 18:06:20 | 显示全部楼层
Occluded Facial Expression Recognition Using Self-supervised Learningownstream task. The experimental results on several databases containing both synthesized and realistic occluded facial images demonstrate the superiority of the proposed method over state-of-the-art methods.
发表于 2025-3-22 21:12:36 | 显示全部楼层
Focal and Global Spatial-Temporal Transformer for Skeleton-Based Action Recognitionteractions between the focal joints and body parts are incorporated to enhance the spatial dependencies via mutual cross-attention. (2) FG-TFormer: focal and global temporal transformer. Dilated temporal convolution is integrated into the global self-attention mechanism to explicitly capture the loc
发表于 2025-3-23 04:30:18 | 显示全部楼层
Spatial-Temporal Adaptive Graph Convolutional Network for Skeleton-Based Action Recognitioning the direct long-range temporal dependencies adaptively. On three large-scale skeleton action recognition datasets: NTU RGB+D 60, NTU RGB+D 120, and Kinetics Skeleton, the STA-GCN outperforms the existing state-of-the-art methods. The code is available at ..
发表于 2025-3-23 08:34:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 04:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表