找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C.V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Swi

[复制链接]
查看: 42881|回复: 63
发表于 2025-3-21 17:38:09 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ACCV 2018
副标题14th Asian Conferenc
编辑C.V. Jawahar,Hongdong Li,Konrad Schindler
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C.V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Swi
描述.The six volume set LNCS 11361-11366 constitutes the proceedings of the 14.th. Asian Conference on Computer Vision, ACCV 2018, held in Perth, Australia, in December 2018. The total of 274 contributions was carefully reviewed and selected from 979 submissions during two rounds of reviewing and improvement. The papers focus on motion and tracking, segmentation and grouping, image-based modeling, dep learning, object recognition object recognition, object detection and categorization, vision and language, video analysis and event recognition, face and gesture analysis, statistical methods and learning, performance evaluation, medical image analysis, document analysis, optimization methods, RGBD and depth camera processing, robotic vision, applications of computer vision..
出版日期Conference proceedings 2019
关键词artificial intelligence; computer vision; databases; image coding; image processing; image reconstruction
版次1
doihttps://doi.org/10.1007/978-3-030-20870-7
isbn_softcover978-3-030-20869-1
isbn_ebook978-3-030-20870-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Computer Vision – ACCV 2018影响因子(影响力)




书目名称Computer Vision – ACCV 2018影响因子(影响力)学科排名




书目名称Computer Vision – ACCV 2018网络公开度




书目名称Computer Vision – ACCV 2018网络公开度学科排名




书目名称Computer Vision – ACCV 2018被引频次




书目名称Computer Vision – ACCV 2018被引频次学科排名




书目名称Computer Vision – ACCV 2018年度引用




书目名称Computer Vision – ACCV 2018年度引用学科排名




书目名称Computer Vision – ACCV 2018读者反馈




书目名称Computer Vision – ACCV 2018读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:18:34 | 显示全部楼层
Dealing with Ambiguity in Robotic Grasping via Multiple Predictionsel that predicts a set of grasp hypotheses in under 60 ms, which is critical for real-time robotic applications. The grasp detection accuracy reaches over . for unseen objects, outperforming the current state of the art on this task.
发表于 2025-3-22 00:36:08 | 显示全部楼层
发表于 2025-3-22 07:45:57 | 显示全部楼层
Robust Deep Multi-modal Learning Based on Gated Information Fusion Networkmodality according to the input feature maps to be fused. The combining weights are determined by applying the convolutional layers followed by the sigmoid function to the concatenated intermediate feature maps. The whole network including the CNN backbone and GIF is trained in an end-to-end fashion
发表于 2025-3-22 11:56:07 | 显示全部楼层
Hardware-Aware Softmax Approximation for Deep Neural Networksating cost-intensive operations in Softmax (. exponential and division) with cost-effective operations (. addition and bit shifts). We designed and synthesized a hardware unit for our approximation approach, to estimate the area and energy consumption. In addition, we introduce a training method to
发表于 2025-3-22 13:59:45 | 显示全部楼层
Video Object Segmentation with Language Referring Expressions. We show that our language-supervised approach performs on par with the methods which have access to a pixel-level mask of the target object on . and is competitive to methods using scribbles on the challenging . dataset.
发表于 2025-3-22 21:07:30 | 显示全部楼层
Nonlinear Subspace Feature Enhancement for Image Set Classificatione of subspace-based classifiers such as sparse representation-based classification. We describe how the structured loss function of NSFE can be optimized in a batch-by-batch fashion by a two-step alternating algorithm. The algorithm makes very few assumptions about the form of the embedding to be le
发表于 2025-3-22 23:23:18 | 显示全部楼层
Adversarial Learning for Visual Storytelling with Sense Group Partitionup as the unit, we propose to do the paragraph generation at sense group level instead of sentence level. Experiments on the widely-used dataset show that our approach generates higher-quality descriptions than previous baselines.
发表于 2025-3-23 01:37:49 | 显示全部楼层
发表于 2025-3-23 06:09:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 16:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表