找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C.V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Swi

[复制链接]
查看: 23120|回复: 52
发表于 2025-3-21 19:27:29 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ACCV 2018
副标题14th Asian Conferenc
编辑C.V. Jawahar,Hongdong Li,Konrad Schindler
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ACCV 2018; 14th Asian Conferenc C.V. Jawahar,Hongdong Li,Konrad Schindler Conference proceedings 2019 Springer Nature Swi
描述.The six volume set LNCS 11361-11366 constitutes the proceedings of the 14.th. Asian Conference on Computer Vision, ACCV 2018, held in Perth, Australia, in December 2018. The total of 274 contributions was carefully reviewed and selected from 979 submissions during two rounds of reviewing and improvement. The papers focus on motion and tracking, segmentation and grouping, image-based modeling, dep learning, object recognition object recognition, object detection and categorization, vision and language, video analysis and event recognition, face and gesture analysis, statistical methods and learning, performance evaluation, medical image analysis, document analysis, optimization methods, RGBD and depth camera processing, robotic vision, applications of computer vision..
出版日期Conference proceedings 2019
关键词artificial intelligence; classification; computer vision; edge detection; estimation; image coding; image
版次1
doihttps://doi.org/10.1007/978-3-030-20873-8
isbn_softcover978-3-030-20872-1
isbn_ebook978-3-030-20873-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Computer Vision – ACCV 2018影响因子(影响力)




书目名称Computer Vision – ACCV 2018影响因子(影响力)学科排名




书目名称Computer Vision – ACCV 2018网络公开度




书目名称Computer Vision – ACCV 2018网络公开度学科排名




书目名称Computer Vision – ACCV 2018被引频次




书目名称Computer Vision – ACCV 2018被引频次学科排名




书目名称Computer Vision – ACCV 2018年度引用




书目名称Computer Vision – ACCV 2018年度引用学科排名




书目名称Computer Vision – ACCV 2018读者反馈




书目名称Computer Vision – ACCV 2018读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:05:13 | 显示全部楼层
发表于 2025-3-22 03:45:29 | 显示全部楼层
Sarah E. Deery MD, MPH,Raul J. Guzman MDhich predicts candidate 2D joint positions, a discrete optimization which finds kinematically plausible joint correspondences, and an energy minimization stage which fits a detailed 3D model to the image. In order to overcome the limited availability of motion capture training data from animals, and
发表于 2025-3-22 06:24:29 | 显示全部楼层
发表于 2025-3-22 12:13:24 | 显示全部楼层
Cameron M. Akbari MD,Frank W. LoGerfo MD coplanar local features. The proposed solvers incorporate lens distortion into the camera model and extend accurate rectification to wide-angle images that contain nearly any type of coplanar repeated content. We demonstrate a principled approach to generating stable minimal solvers by the Gröbner
发表于 2025-3-22 16:51:03 | 显示全部楼层
https://doi.org/10.1007/978-1-59745-153-6rtant. We propose a novel self-supervised learning approach for predicting the omnidirectional depth and camera motion from a 360. video. In particular, starting from the SfMLearner, which is designed for cameras with normal field-of-view, we introduce three key features to process 360. images effic
发表于 2025-3-22 20:18:08 | 显示全部楼层
发表于 2025-3-22 23:21:00 | 显示全部楼层
The Islets of Infants of Diabetic Mothers,ingle-image 2D hand-pose reconstruction from RGB images, we collected a challenging dataset of hands interacting with 148 objects. We used a novel methodology that provides the same hand in the same pose both with the object being present and occluding the hand and without the object occluding the h
发表于 2025-3-23 01:32:53 | 显示全部楼层
Bruno W. Volk,Klaus F. Wellmannl-flow, to supervise representations of static images. The obvious approach of training a network to predict flow from a single image can be needlessly difficult due to intrinsic ambiguities in this prediction task. We instead propose a much simpler learning goal: embed pixels such that the similari
发表于 2025-3-23 09:35:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 01:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表