找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision and Image Processing; 7th International Co Deep Gupta,Kishor Bhurchandi,Sanjeev Kumar Conference proceedings 2023 The Edito

[复制链接]
楼主: supplementary
发表于 2025-3-23 13:35:05 | 显示全部楼层
发表于 2025-3-23 16:26:26 | 显示全部楼层
Rain Streak Removal via Spatio-Channel Based Spectral Graph CNN for Image Deraining,g deraining methods ignores long range contextual information and utilize only local spatial information. To address this issue, a Spatio-channel based Spectral Graph Convolutional Neural Network (SCSGCNet) for image deraining was proposed and two new modules were introduced to extract representatio
发表于 2025-3-23 20:44:37 | 显示全部楼层
发表于 2025-3-24 01:48:23 | 显示全部楼层
发表于 2025-3-24 04:16:39 | 显示全部楼层
发表于 2025-3-24 06:56:16 | 显示全部楼层
发表于 2025-3-24 11:45:54 | 显示全部楼层
A Curated Dataset for Spinach Species Identification,es because of the structure similarity of many plant species. So, automated spinach recognition will support the people community to a greater extent. In this study, we present spinach dataset, a freely accessible annotated collection of images of spinach leaves in Indian scenario. We propose three
发表于 2025-3-24 17:38:19 | 显示全部楼层
发表于 2025-3-24 20:34:14 | 显示全部楼层
,Computing Digital Signature by Transforming 2D Image to 3D: A Geometric Perspective,o various 3D reconstruction techniques using neural nets, with the majority of approaches producing high-quality results and efficiency. This paper presents an approach to convert 2D facial images to 3D and then use the 3D data and features to construct a unique digital signature. The proposed solut
发表于 2025-3-25 01:14:26 | 显示全部楼层
A Curated Dataset for Spinach Species Identification,different custom designed convolutional neural networks (CNN) and compare the performance of the same. Also we apply the transfer learning approach using MobileNetV2 pretrained model for this spinach species recognition. Using transfer learning approach we got an accuracy of 92.96%.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 02:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表