找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision and Image Processing; 7th International Co Deep Gupta,Kishor Bhurchandi,Sanjeev Kumar Conference proceedings 2023 The Edito

[复制链接]
查看: 37002|回复: 62
发表于 2025-3-21 19:02:20 | 显示全部楼层 |阅读模式
书目名称Computer Vision and Image Processing
副标题7th International Co
编辑Deep Gupta,Kishor Bhurchandi,Sanjeev Kumar
视频videohttp://file.papertrans.cn/235/234061/234061.mp4
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Computer Vision and Image Processing; 7th International Co Deep Gupta,Kishor Bhurchandi,Sanjeev Kumar Conference proceedings 2023 The Edito
描述.This two volume set (CCIS 1776-1777) constitutes the refereed proceedings of the 7th International Conference on Computer Vision and Image Processing, CVIP 2022, held in Nagpur, India, November 4–6, 2022..The 110 full papers and 11 short papers were carefully reviewed and selected from 307 submissions. Out of 121 papers, 109 papers are included in this book. The topical scope of the two-volume set focuses on Medical Image  Analysis,  Image/  Video  Processing  for  Autonomous  Vehicles,  Activity Detection/  Recognition,  Human  Computer  Interaction,  Segmentation  and  Shape Representation,  Motion  and  Tracking,  Image/  Video  Scene  Understanding,  Image/Video  Retrieval,  Remote  Sensing,  Hyperspectral  Image  Processing,  Face,  Iris, Emotion, Sign Language and Gesture Recognition, etc..
出版日期Conference proceedings 2023
关键词Computer Science; Informatics; Conference Proceedings; Research; Applications
版次1
doihttps://doi.org/10.1007/978-3-031-31417-9
isbn_softcover978-3-031-31416-2
isbn_ebook978-3-031-31417-9Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Computer Vision and Image Processing影响因子(影响力)




书目名称Computer Vision and Image Processing影响因子(影响力)学科排名




书目名称Computer Vision and Image Processing网络公开度




书目名称Computer Vision and Image Processing网络公开度学科排名




书目名称Computer Vision and Image Processing被引频次




书目名称Computer Vision and Image Processing被引频次学科排名




书目名称Computer Vision and Image Processing年度引用




书目名称Computer Vision and Image Processing年度引用学科排名




书目名称Computer Vision and Image Processing读者反馈




书目名称Computer Vision and Image Processing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:13:46 | 显示全部楼层
发表于 2025-3-22 01:12:24 | 显示全部楼层
发表于 2025-3-22 06:10:20 | 显示全部楼层
发表于 2025-3-22 12:42:41 | 显示全部楼层
发表于 2025-3-22 14:10:36 | 显示全部楼层
Self Similarity Matrix Based CNN Filter Pruning,ightweight models all the more imminent. Another solution is to optimize and prune regular deep learning models. In this paper, we tackle the problem of CNN model pruning with the help of Self-Similarity Matrix (SSM) computed from the 2D CNN filters. We propose two novel algorithms to rank and prune
发表于 2025-3-22 17:46:44 | 显示全部楼层
,Class Agnostic, On-Device and Privacy Preserving Repetition Counting of Actions from Videos Using Salculating the pairwise similarity between each sampled frame of the video, using the per frame features extracted by the feature extraction module and a suitable distance metric in the temporal self-similarity(TSM) calculation module. We pass this calculated TSM matrix to the count prediction modul
发表于 2025-3-23 00:42:16 | 显示全部楼层
发表于 2025-3-23 03:34:14 | 显示全部楼层
,Attention Residual Capsule Network for Dermoscopy Image Classification, automated classification algorithms using deep convolutional neural network (DCNN) models have been proposed, the need for performance improvement remains. The key limitations of developing a robust DCNN model for the dermoscopic image classification are (a) sub-sampling or pooling layer in traditi
发表于 2025-3-23 08:08:33 | 显示全部楼层
,SAMNet: Semantic Aware Multimodal Network for Emoji Drawing Classification,ile writing on touch-responsive devices, searching for emojis to capture the true intent is cumbersome. To solve this problem, the existing solutions consider either the text or only stroke-based drawings to predict the appropriate emojis. We do not leverage the full context by considering only a si
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 01:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表