找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision Using Deep Learning; Neural Network Archi Vaibhav Verdhan Book 2021 Vaibhav Verdhan 2021 Deep Learning.Computer vision.Arti

[复制链接]
查看: 11536|回复: 39
发表于 2025-3-21 19:40:31 | 显示全部楼层 |阅读模式
书目名称Computer Vision Using Deep Learning
副标题Neural Network Archi
编辑Vaibhav Verdhan
视频video
概述Implement Deep Learning solutions on your own systems to bridge the gap between theory and practice.Examine the inner workings of the codes and libraries that make Deep Learning applications work.Crea
图书封面Titlebook: Computer Vision Using Deep Learning; Neural Network Archi Vaibhav Verdhan Book 2021 Vaibhav Verdhan 2021 Deep Learning.Computer vision.Arti
描述.Organizations spend huge resources in developing software that can perform the way a human does. Image classification, object detection and tracking, pose estimation, facial recognition, and sentiment estimation all play a major role in solving computer vision problems. .This book will bring into focus these and other deep learning architectures and techniques to help you create solutions using Keras and the TensorFlow library. You‘ll also review mutliple neural network architectures, including LeNet, AlexNet, VGG, Inception, R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, YOLO, and SqueezeNet and see how they work alongside Python code via best practices, tips, tricks, shortcuts, and pitfalls. All code snippets will be broken down and discussed thoroughly so you can implement the same principles in your respective environments..Computer Vision Using Deep Learning. offers a comprehensive yet succinct guide that stitches DL and CV together to automate operations, reduce human intervention, increase capability, and cut the costs. .What You‘ll Learn.Examine deep learning code and concepts to apply guiding principals to your own projects.Classify and evaluate various architectures to bet
出版日期Book 2021
关键词Deep Learning; Computer vision; Artificial Intelligence; AI; Object Detection; Image Classification; Pose
版次1
doihttps://doi.org/10.1007/978-1-4842-6616-8
isbn_softcover978-1-4842-6615-1
isbn_ebook978-1-4842-6616-8
copyrightVaibhav Verdhan 2021
The information of publication is updating

书目名称Computer Vision Using Deep Learning影响因子(影响力)




书目名称Computer Vision Using Deep Learning影响因子(影响力)学科排名




书目名称Computer Vision Using Deep Learning网络公开度




书目名称Computer Vision Using Deep Learning网络公开度学科排名




书目名称Computer Vision Using Deep Learning被引频次




书目名称Computer Vision Using Deep Learning被引频次学科排名




书目名称Computer Vision Using Deep Learning年度引用




书目名称Computer Vision Using Deep Learning年度引用学科排名




书目名称Computer Vision Using Deep Learning读者反馈




书目名称Computer Vision Using Deep Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:14:35 | 显示全部楼层
发表于 2025-3-22 02:37:37 | 显示全部楼层
发表于 2025-3-22 06:42:21 | 显示全部楼层
发表于 2025-3-22 12:30:01 | 显示全部楼层
Face Recognition and Gesture Recognition,fferent poses we make, and different expressions we have. Our mobile phones and cameras capture all of this. When we recognize a friend, we recognize the face – its shape, eyes, facial characteristics. And quite interestingly, even if we look at the same face from a side pose, we will be able to rec
发表于 2025-3-22 15:43:13 | 显示全部楼层
发表于 2025-3-22 17:44:30 | 显示全部楼层
VGGNet and AlexNet Networks,g architectures. We work on a network architecture, improve it, and make it more robust, accurate, and efficient. The selection of the neural network architectures is based on the testing done of various architectures.
发表于 2025-3-23 00:26:46 | 显示全部楼层
发表于 2025-3-23 03:52:03 | 显示全部楼层
发表于 2025-3-23 06:18:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 05:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表