找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision Systems; 10th International C Lazaros Nalpantidis,Volker Krüger,Antonios Gastera Conference proceedings 2015 Springer Inter

[复制链接]
查看: 8778|回复: 57
发表于 2025-3-21 19:03:49 | 显示全部楼层 |阅读模式
书目名称Computer Vision Systems
副标题10th International C
编辑Lazaros Nalpantidis,Volker Krüger,Antonios Gastera
视频video
概述Up-to-date results.Fast track conference proceedings.State-of-the-art report.Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision Systems; 10th International C Lazaros Nalpantidis,Volker Krüger,Antonios Gastera Conference proceedings 2015 Springer Inter
描述This book constitutes the refereed proceedings of the 10th International Conference on Computer Vision Systems, ICVS 2015, held in Copenhagen, Denmark, in July 2015. The 48 papers presented were carefully reviewed and selected from 92 submissions. The paper are organized in topical sections on biological and cognitive vision; hardware-implemented and real-time vision systems; high-level vision; learning and adaptation; robot vision; and vision systems applications.
出版日期Conference proceedings 2015
关键词3D modeling; Biological vision; Cognitive vision; Context awareness; Features extraction; Fuzzy clusterin
版次1
doihttps://doi.org/10.1007/978-3-319-20904-3
isbn_softcover978-3-319-20903-6
isbn_ebook978-3-319-20904-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Computer Vision Systems影响因子(影响力)




书目名称Computer Vision Systems影响因子(影响力)学科排名




书目名称Computer Vision Systems网络公开度




书目名称Computer Vision Systems网络公开度学科排名




书目名称Computer Vision Systems被引频次




书目名称Computer Vision Systems被引频次学科排名




书目名称Computer Vision Systems年度引用




书目名称Computer Vision Systems年度引用学科排名




书目名称Computer Vision Systems读者反馈




书目名称Computer Vision Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:24:39 | 显示全部楼层
Integers and Fixed-Point Numbers. The algorithm runs at 22 Hz processing 2 MP image pairs and computing disparity maps with up to 255 disparities. The conducted evaluations on the KITTI Dataset and on a challenging bad weather dataset show that full depth resolution is obtained for small disparities and robustness of the method is
发表于 2025-3-22 04:27:16 | 显示全部楼层
发表于 2025-3-22 08:12:55 | 显示全部楼层
发表于 2025-3-22 08:57:51 | 显示全部楼层
Yuri Demchenko,Juan J. Cuadrado-Gallegocan be preserved in the model training which consequently leads to performance improvement in the testing. Experiments conducted on commonly used benchmarks for cross-domain image classification show that our method significantly outperforms the state-of-the-art.
发表于 2025-3-22 14:47:12 | 显示全部楼层
Comparison of Statistical Features for Medical Colour Image Classificationix and Grey-Level Run-Length Matrix. Furthermore, we calculate Grey-Level Run-Length Matrix starting from the Grey-Level Difference Matrix. The resulting feature sets performances have been compared using the Support Vector Machine model. To validate our method we have used three different databases
发表于 2025-3-22 21:01:01 | 显示全部楼层
发表于 2025-3-22 22:44:34 | 显示全部楼层
Bayesian Formulation of Gradient Orientation Matchinghing. Another application is background/foreground segmentation. This paper will use the latter application as an example, but is focused on the general formulation. It is shown how the theory can be used to implement a very fast background/foreground segmentation algorithm that is capable of handli
发表于 2025-3-23 05:18:57 | 显示全部楼层
Surface Reconstruction from Intensity Image Using Illumination Model Based Morphable Modelinganding different materials, lighting conditions and, the underneath sign matrix is also obtained by resizing/deforming Region of Interest(ROI) with respect to its counterpart of a similar object. The target object is then reconstructed from its still image. In addition to the process, delicate detai
发表于 2025-3-23 07:07:45 | 显示全部楼层
An Informative Logistic Regression for Cross-Domain Image Classificationcan be preserved in the model training which consequently leads to performance improvement in the testing. Experiments conducted on commonly used benchmarks for cross-domain image classification show that our method significantly outperforms the state-of-the-art.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 12:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表