找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision -- ACCV 2014; 12th Asian Conferenc Daniel Cremers,Ian Reid,Ming-Hsuan Yang Conference proceedings 2015 Springer Internation

[复制链接]
查看: 36948|回复: 64
发表于 2025-3-21 16:22:58 | 显示全部楼层 |阅读模式
书目名称Computer Vision -- ACCV 2014
副标题12th Asian Conferenc
编辑Daniel Cremers,Ian Reid,Ming-Hsuan Yang
视频videohttp://file.papertrans.cn/235/234014/234014.mp4
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision -- ACCV 2014; 12th Asian Conferenc Daniel Cremers,Ian Reid,Ming-Hsuan Yang Conference proceedings 2015 Springer Internation
描述.The five-volume set LNCS 9003--9007 constitutes the thoroughly refereed post-conference proceedings of the 12th Asian Conference on Computer Vision, ACCV 2014, held in Singapore, Singapore, in November 2014..The total of 227 contributions presented in these volumes was carefully reviewed and selected from 814 submissions. The papers are organized in topical sections on recognition; 3D vision; low-level vision and features; segmentation; face and gesture, tracking; stereo, physics, video and events; and poster sessions 1-3..
出版日期Conference proceedings 2015
关键词action recognition; aerial images; camera calibration; city-scale; data mining; differential constraints;
版次1
doihttps://doi.org/10.1007/978-3-319-16811-1
isbn_softcover978-3-319-16810-4
isbn_ebook978-3-319-16811-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Computer Vision -- ACCV 2014影响因子(影响力)




书目名称Computer Vision -- ACCV 2014影响因子(影响力)学科排名




书目名称Computer Vision -- ACCV 2014网络公开度




书目名称Computer Vision -- ACCV 2014网络公开度学科排名




书目名称Computer Vision -- ACCV 2014被引频次




书目名称Computer Vision -- ACCV 2014被引频次学科排名




书目名称Computer Vision -- ACCV 2014年度引用




书目名称Computer Vision -- ACCV 2014年度引用学科排名




书目名称Computer Vision -- ACCV 2014读者反馈




书目名称Computer Vision -- ACCV 2014读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:51:26 | 显示全部楼层
发表于 2025-3-22 03:48:06 | 显示全部楼层
发表于 2025-3-22 05:24:15 | 显示全部楼层
发表于 2025-3-22 09:43:53 | 显示全部楼层
A High Performance CRF Model for Clothes Parsing,riors for each garment as well as similarities between segments, and symmetries between different human body parts. We demonstrate the effectiveness of our approach on the Fashionista dataset [.] and show that we can obtain a significant improvement over the state-of-the-art.
发表于 2025-3-22 14:41:54 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-6036-8ely define the common-object labels. We then use cooperative cut to segment the common objects according to the common-object labels. Experimental results demonstrate that the proposed method outperforms the state-of-the-art co-segmentation methods in the segmentation accuracy of the common objects in the images.
发表于 2025-3-22 20:12:25 | 显示全部楼层
Distribution and economic importance,hich improves the performance significantly. Furthermore, we train an efficient network in a multi-task way which can do age estimation, gender classification and ethnicity classification well simultaneously. The experiments on MORPH Album 2 illustrate the superiorities of the proposed multi-scale CNN over other state-of-the-art methods.
发表于 2025-3-22 22:23:10 | 显示全部楼层
发表于 2025-3-23 01:35:47 | 显示全部楼层
发表于 2025-3-23 09:16:16 | 显示全部楼层
Unsupervised Image Co-segmentation Based on Cooperative Game,ely define the common-object labels. We then use cooperative cut to segment the common objects according to the common-object labels. Experimental results demonstrate that the proposed method outperforms the state-of-the-art co-segmentation methods in the segmentation accuracy of the common objects in the images.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 03:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表