找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision - ACCV 2014 Workshops; Singapore, Singapore C.V. Jawahar,Shiguang Shan Conference proceedings 2015 Springer International P

[复制链接]
楼主: 瘦削
发表于 2025-3-30 08:31:25 | 显示全部楼层
Object Recognition in 3D Point Cloud of Urban Street SceneiDAR laser scanner. An important problem in object recognition is the need for sufficient labeled training data to learn robust classifiers. In this paper we show how to significantly reduce the need for manually labeled training data by reduction of scene complexity using non-supervised ground and
发表于 2025-3-30 15:12:30 | 显示全部楼层
发表于 2025-3-30 19:01:21 | 显示全部楼层
发表于 2025-3-30 22:24:33 | 显示全部楼层
Depth-Based Real-Time Hand Tracking with Occlusion Handling Using Kalman Filter and DAM-Shiftift) algorithm for occlusion handling. DAM-Shift is a useful algorithm for hand tracking, but difficult to track when occlusion occurs. To detect the hand region, we use a classifier that combines a boosting and a cascade structure. To verify occlusion, we predict in real time the center position of
发表于 2025-3-31 02:50:14 | 显示全部楼层
发表于 2025-3-31 08:38:31 | 显示全部楼层
发表于 2025-3-31 11:58:23 | 显示全部楼层
发表于 2025-3-31 17:26:03 | 显示全部楼层
Computer Vision - ACCV 2014 Workshops978-3-319-16628-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-31 20:54:02 | 显示全部楼层
Linnaeus and the Four Corners of the Worlding body shapes as silhouettes averaged over gait cycles. Our method, however, captures geometric properties of the silhouettes boundaries. Namely, we evaluate contour curvatures locally using Gauss maps. This results in an improved shape representation, as contrasted to average silhouettes. In addi
发表于 2025-4-1 00:19:07 | 显示全部楼层
https://doi.org/10.1057/9781137338211 color, upper body position and flow information. We apply our hand detection results to perform fine-grained human action recognition. We demonstrate that motion features extracted from hand areas can help classify actions even when they look familiar and they are associated with visually similar o
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 03:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表