找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Science – Theory and Applications; 16th International C Rahul Santhanam,Daniil Musatov Conference proceedings 2021 Springer Nature

[复制链接]
查看: 50830|回复: 61
发表于 2025-3-21 16:58:17 | 显示全部楼层 |阅读模式
书目名称Computer Science – Theory and Applications
副标题16th International C
编辑Rahul Santhanam,Daniil Musatov
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Science – Theory and Applications; 16th International C Rahul Santhanam,Daniil Musatov Conference proceedings 2021 Springer Nature
描述.This book constitutes the proceedings of the 16th International Computer Science Symposium in Russia, CSR 2021, held in Sochi, Russia, in June/July 2021...The 28 full papers were carefully reviewed and selected from 68 submissions. The papers cover a broad range of topics, such as formal languages and automata theory, geometry and discrete structures; theory and algorithms for application domains and much more. .
出版日期Conference proceedings 2021
关键词approximation theory; artificial intelligence; communication; computer hardware; computer networks; compu
版次1
doihttps://doi.org/10.1007/978-3-030-79416-3
isbn_softcover978-3-030-79415-6
isbn_ebook978-3-030-79416-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Computer Science – Theory and Applications影响因子(影响力)




书目名称Computer Science – Theory and Applications影响因子(影响力)学科排名




书目名称Computer Science – Theory and Applications网络公开度




书目名称Computer Science – Theory and Applications网络公开度学科排名




书目名称Computer Science – Theory and Applications被引频次




书目名称Computer Science – Theory and Applications被引频次学科排名




书目名称Computer Science – Theory and Applications年度引用




书目名称Computer Science – Theory and Applications年度引用学科排名




书目名称Computer Science – Theory and Applications读者反馈




书目名称Computer Science – Theory and Applications读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:07:05 | 显示全部楼层
发表于 2025-3-22 04:20:20 | 显示全部楼层
Variants of the Determinant Polynomial and the ,-Completeness,olynomial which we call . and . and show that they are . and . complete respectively under .-projections. The definitions of the polynomials are inspired by a combinatorial characterisation of the determinant developed by Mahajan and Vinay (SODA 1997). We extend the combinatorial object in their wor
发表于 2025-3-22 04:56:01 | 显示全部楼层
Dynamic Complexity of Expansion,.,.,., ., ., ., .] for some representative examples. Use of linear algebra has been a notable feature of some of these papers. We extend this theme to show that the gap version of spectral expansion in bounded degree graphs can be maintained in the class . (also known as ., for domain independent qu
发表于 2025-3-22 11:04:28 | 显示全部楼层
Real ,-Conjecture for Sum-of-Squares: A Unified Approach to Lower Bound and Derandomization,n the number of distinct real roots of . is polynomially bounded in .. Assuming the conjecture with parameter ., one can show that . (i.e. symbolic permanent requires superpolynomial-size circuit). In this paper, we propose a .-conjecture for sum-of-squares (SOS) model (equivalently, .)..For a univa
发表于 2025-3-22 14:44:04 | 显示全部楼层
发表于 2025-3-22 17:34:55 | 显示全部楼层
Approximation Schemes for Multiperiod Binary Knapsack Problems,otes the cumulative size for periods ., and a list of . items. Each item is a triple (., ., .) where . denotes the reward or value of the item, . its size, and . denotes its time index (or, deadline). The goal is to choose, for each deadline ., which items to include to maximize the total reward, su
发表于 2025-3-22 21:18:07 | 显示全部楼层
Limitations of Sums of Bounded Read Formulas and ABPs,ng task in algebraic complexity theory. We study representation of polynomials as sums of weaker models such as read once formulas (ROFs) and read once oblivious algebraic branching programs (ROABPs). We prove: .Our results are based on analysis of the partial derivative matrix under different distr
发表于 2025-3-23 05:21:18 | 显示全部楼层
发表于 2025-3-23 07:52:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 00:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表