找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Graphics and Geometric Modeling Using Beta-splines; Brian A. Barsky Book 1988 Springer-Verlag Berlin Heidelberg 1988 computer gra

[复制链接]
楼主: BRISK
发表于 2025-3-25 05:06:29 | 显示全部楼层
发表于 2025-3-25 10:59:22 | 显示全部楼层
Technology and the Human: Hans Jonasxpression for the curve will have a denominator of δ(.). It is thus of computational interest to define corresponding sets of coefficient functions and basis functions that are scaled by a factor of δ(.). This would simplify the expressions and eliminate redundant divisions. These scaled coefficient
发表于 2025-3-25 13:58:39 | 显示全部楼层
发表于 2025-3-25 17:22:17 | 显示全部楼层
Technik der Impfstoffe und Heilsera involves the computation of points on the surface for many different values of the domain parameters. The determination of a point on the patch requires the evaluation of the surface formulation at an appropriate (.) value. This entails the evaluation of the four basis functions at the value of . a
发表于 2025-3-25 22:33:55 | 显示全部楼层
https://doi.org/10.1007/978-3-663-04316-4pe parameters. Analogous to the Beta-spline curve, they will now be generalized to be . shape parameters, each varying continuously along the surface. The continuous analogues of β1 and β2 will be denoted β1.(.) and β2.(.), respectively, and describe the value of each shape parameter at the point ..
发表于 2025-3-26 03:58:28 | 显示全部楼层
Technik der Maschinen-Buchhaltung information specified by the control vertices. These shape parameters have the property that β1 = 1 indicates continuity of the parametric first derivative vector and β1 = 1 with β2 = 0 indicates continuity of the parametric first and second derivative vectors.
发表于 2025-3-26 07:39:55 | 显示全部楼层
发表于 2025-3-26 11:00:10 | 显示全部楼层
发表于 2025-3-26 13:45:41 | 显示全部楼层
发表于 2025-3-26 16:47:51 | 显示全部楼层
https://doi.org/10.1007/978-94-009-9900-8uitively “pull out” these points by increasing tension. This concept was first analytically modeled by Schweikert in [23] and an alternative development was given in [6] and generalized in [19]. A detailed derivation of the generalized form based on a variational principle is given in [1].
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 04:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表