找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Graphics 1987; Proceedings of CG In Tosiyasu L. Kunii (Professor and Director) Conference proceedings 1987 Springer-Verlag Tokyo 1

[复制链接]
楼主: urinary-tract
发表于 2025-3-27 00:01:32 | 显示全部楼层
The Mathematics of Computer Graphicsle tool to evaluate algorithms or transform data into some appropriate pictoral representation. Thus standard computer graphics texts have little to say about numerical methods, just as earlier numerical analysis textbooks had little to say about computer graphics. This is now changing, for the important reasons outlined in this paper.
发表于 2025-3-27 02:59:41 | 显示全部楼层
发表于 2025-3-27 05:42:14 | 显示全部楼层
978-4-431-68059-8Springer-Verlag Tokyo 1987
发表于 2025-3-27 10:21:22 | 显示全部楼层
http://image.papertrans.cn/c/image/233559.jpg
发表于 2025-3-27 14:18:14 | 显示全部楼层
发表于 2025-3-27 18:06:41 | 显示全部楼层
发表于 2025-3-28 00:03:09 | 显示全部楼层
,Learners’ Philosophies about Technologies, planar images. These planar diagrams have geometrical properties corresponding to certain properties of the relation they represent. Starting from a . ← → . duality when . = 2, the representation of lines in .. is given and illustrated by an application to Air Traffic Control (i.e. for ..). It is f
发表于 2025-3-28 02:43:29 | 显示全部楼层
Cornel Samoila,Doru Ursutiu,Vlad Jingaidpoint subdivision is much more efficient although it sacrifices mathematical purity for execution speed. In our implementation, fractal polygons are created using subdivisions of meshes of triangles. But the midpoint is randomly generated inside a revolution volume where the axis is the edge itsel
发表于 2025-3-28 08:08:13 | 显示全部楼层
Michel Beney,Marie-Geneviève Séré algorithm spatially sorts the drawing curved lines into a number of squared grid cells partitioning the drawing plane to reduce the amount of complex geometric computations for line intersections. Hidden line segments in the algorithm are separated into two types and processed in different phases.
发表于 2025-3-28 13:55:28 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-2 22:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表