找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational and Robotic Models of the Hierarchical Organization of Behavior; Gianluca Baldassarre,Marco Mirolli Book 2013 Springer-Verla

[复制链接]
楼主: 初生
发表于 2025-3-23 12:40:44 | 显示全部楼层
发表于 2025-3-23 17:47:31 | 显示全部楼层
Divide and Conquer: Hierarchical Reinforcement Learning and Task Decomposition in Humansr, the simple forms of RL considered in most empirical research do not scale well, making their relevance to complex, real-world behavior unclear. In computational RL, one strategy for addressing the scaling problem is to introduce hierarchical structure, an approach that has intriguing parallels wi
发表于 2025-3-23 21:59:03 | 显示全部楼层
Neural Network Modelling of Hierarchical Motor Function in the Brainsible neural network architectures with local associative synaptic learning rules. The chapter begins with a review of our own laboratory’s work in this area. We present a series of hierarchical motor models and relate these to various areas of brain function. This is followed by a discussion of the
发表于 2025-3-24 01:55:39 | 显示全部楼层
发表于 2025-3-24 06:04:17 | 显示全部楼层
发表于 2025-3-24 08:37:57 | 显示全部楼层
发表于 2025-3-24 11:30:49 | 显示全部楼层
https://doi.org/10.1007/978-1-0716-1916-2tion mechanisms, underlying the agent’s ability to add new behaviours to its repertoire. Based on these factors, we review multiple instantiations of a hierarchically-organised biologically-inspired framework for embodied action perception, demonstrating its flexibility in addressing the rich comput
发表于 2025-3-24 17:55:54 | 显示全部楼层
发表于 2025-3-24 20:52:31 | 显示全部楼层
发表于 2025-3-25 01:03:36 | 显示全部楼层
Jing Xue,Annie Quan,Phillip J. Robinsoned on its highest cognitive layer where knowledge is constructed and used. We investigate the roles of reactive and contextual control depending on the characteristics and complexity of the tasks. We also show how multi-sensor information could be integrated in order to acquire and use knowledge opt
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 03:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表