找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Reconstruction of Missing Data in Biological Research; Feng Bao Book 2021 Tsinghua University Press 2021 Machine Learning.Bi

[复制链接]
楼主: 深谋远虑
发表于 2025-3-23 11:52:25 | 显示全部楼层
发表于 2025-3-23 14:59:54 | 显示全部楼层
Challenges of Real-Time Decision Supportr most of existing datasets, only about 20% of the genetic profiles can be effectively measured. Facing this problem, this chapter proposes deep recurrent autoencoder learning to achieve accurate and rapid imputation of missing gene expressions from millions of cell expression data.
发表于 2025-3-23 19:51:41 | 显示全部楼层
发表于 2025-3-23 23:49:38 | 显示全部楼层
Fast Computational Recovery of Missing Features for Large-scale Biological Data,r most of existing datasets, only about 20% of the genetic profiles can be effectively measured. Facing this problem, this chapter proposes deep recurrent autoencoder learning to achieve accurate and rapid imputation of missing gene expressions from millions of cell expression data.
发表于 2025-3-24 05:54:49 | 显示全部楼层
发表于 2025-3-24 07:04:23 | 显示全部楼层
Emily Banwell,Terry Hanley,Aaron Sefisis of internal structure of the data, the proposed method tries to rebalance the unbalanced data. On the association analysis and prediction tasks, we demonstrate the strucure-aware rebalancing method can efficiently improve the analysis of imbalanced data.
发表于 2025-3-24 14:33:39 | 显示全部楼层
Computational Recovery of Sample Missings,sis of internal structure of the data, the proposed method tries to rebalance the unbalanced data. On the association analysis and prediction tasks, we demonstrate the strucure-aware rebalancing method can efficiently improve the analysis of imbalanced data.
发表于 2025-3-24 15:16:44 | 显示全部楼层
发表于 2025-3-24 22:23:52 | 显示全部楼层
Murray Turoff,Connie White,Linda Plotnickpast decade, the vigorous development of new biological technologies has provided effective tools for life science study, making it possible to collect biological data and reveal the life science functionalities on large scale, deep level, and multiple angles. Deriving meaningful biological conclusi
发表于 2025-3-25 02:35:02 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-6 00:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表