找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Optimization; A Tribute to Olvi Ma Jong-Shi Pang Book 1999 Springer Science+Business Media New York 1999 Analysis.MATLAB.Sage

[复制链接]
楼主: purulent
发表于 2025-3-25 03:36:47 | 显示全部楼层
Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming,cified elements of A that make A a Euclidean distance matrix (EDM). In this paper, we follow the successful approach in [20] and solve the EDMCP by generalizing the completion problem to allow for approximate completions. In particular, we introduce a primal-dual interiorpoint algorithm that solves
发表于 2025-3-25 10:02:17 | 显示全部楼层
A Logarithmic-Quadratic Proximal Method for Variational Inequalities,c proximal term which replaces the usual quadratic, and leads to an interior proximal type algorithm. We allow for computing the iterates approximately and prove that the resulting method is globally convergent under the sole assumption that the optimal set of the variational inequality is nonempty.
发表于 2025-3-25 14:55:57 | 显示全部楼层
A Note on Error Bounds for Convex and Nonconvex Programs,. We assume that .. satisfies a weakened form of the Slater condition. We apply the bound to convex programs and we discuss its relation to Hoffman-like bounds. As a special case, we recover a bound due to Mangasarian [ 11 ] on the distance of a point to a convex set specified by inequalities.
发表于 2025-3-25 18:48:42 | 显示全部楼层
发表于 2025-3-25 22:25:09 | 显示全部楼层
,A Partitioned ∈-Relaxation Algorithm for Separable Convex Network Flow Problems, the nonlinear cost terms. The arcs are partitioned into two sets, one of which contains only arcs corresponding to strictly convex costs. The algorithm adjusts flows on the other arcs whenever possible. and terminates with primal-dual pairs that satisfy complementary slackness on the strictly conve
发表于 2025-3-26 00:23:26 | 显示全部楼层
发表于 2025-3-26 06:02:22 | 显示全部楼层
发表于 2025-3-26 11:12:37 | 显示全部楼层
发表于 2025-3-26 16:26:26 | 显示全部楼层
发表于 2025-3-26 18:42:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 16:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表