找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes; From Bioinformatics Adam Liwo Book 2

[复制链接]
楼主: gingerly
发表于 2025-3-25 04:48:57 | 显示全部楼层
,Die Strukturierung einer Internetpräsenz,mplementation. Two other trajectory fragments methods (Partial Path Transition Interface Sampling and Markov State Models) are briefly discussed as well. Finally, two recent applications of trajectory fragments methods are described.
发表于 2025-3-25 09:30:37 | 显示全部楼层
发表于 2025-3-25 14:15:19 | 显示全部楼层
发表于 2025-3-25 16:33:24 | 显示全部楼层
Suchmaschinenoptimierung kompakt the presence of explicit protein crowders, carried out by us using an all-atom Monte Carlo-based approach along with an implicit solvent force field. For interpreting the simulation data, time-lagged independent component analysis and Markov state modeling are used.
发表于 2025-3-25 23:59:42 | 显示全部楼层
Protein Structure Prediction Using Coarse-Grained Modelster we discuss these components, highlighting ideas which have proven to be the most successful. As CG methods are usually part of multistage procedures, we also describe approaches used for the incorporation of homology data and all-atom reconstruction methods.
发表于 2025-3-26 02:59:54 | 显示全部楼层
Protein Dynamics Simulations Using Coarse-Grained Modelsronin action, mechanical properties of proteins and their complexes, membrane proteins, protein-protein interactions and intrinsically unfolded proteins. These areas illustrate the opportunities for practical applications of CG simulations.
发表于 2025-3-26 04:49:06 | 显示全部楼层
发表于 2025-3-26 11:31:08 | 显示全部楼层
Modeling Nucleic Acids at the Residue–Level Resolutionto predict the tertiary structure of RNA or used for large ribonucleoprotein complexes. We describe how the purpose of the model affects the design of the potential energy function and the choice of the simulation method. We also address the limitations of these models.
发表于 2025-3-26 12:47:57 | 显示全部楼层
发表于 2025-3-26 19:08:17 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-3 19:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表