找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Methods for Linear Integral Equations; Prem K. Kythe,Pratap Puri Book 2002 Birkhäuser Boston 2002 Integral equation.Integral

[复制链接]
楼主: cherub
发表于 2025-3-25 03:29:50 | 显示全部楼层
发表于 2025-3-25 11:24:28 | 显示全部楼层
发表于 2025-3-25 14:57:11 | 显示全部楼层
发表于 2025-3-25 17:21:47 | 显示全部楼层
Helmut Laux,Matthias M. Schabel rule solves an FK2 of the form .(.)—λ (.) (.) = .(.) and yields an approximate solution ., which we take as a vector with functional values .. These values are used in the Nyström methods, discussed in Section 1.6, to yield the approximation .. We present in this and the next chapter some of these
发表于 2025-3-25 22:23:41 | 显示全部楼层
https://doi.org/10.1007/978-3-540-85273-5h problems. Variational methods for solving boundary value problems are based on the techniques developed in the calculus of variations. They deal with the problem of minimizing a functional, and thus reducing the given problem to solving a system of algebraic equations. Conversely, a boundary value
发表于 2025-3-26 02:17:18 | 显示全部楼层
发表于 2025-3-26 07:19:40 | 显示全部楼层
Marktbewertung im Mehrperioden-Fallnotations. Delves and Mohamed (1985) use it to mean any kind of lack of analyticity in an integral equation. However, they distinguish between the following types of singular integral equations: (i) those with a semi-infinite or infinite range; (ii) those with a discontinuous derivative in either th
发表于 2025-3-26 11:57:50 | 显示全部楼层
发表于 2025-3-26 14:17:16 | 显示全部楼层
发表于 2025-3-26 18:38:51 | 显示全部楼层
Marktbewertung im Mehrperioden-Fall equations the free term .(.) is the Laplace transform of an unknown function .(.), 0 < . < ∞, where . is the variable of the transform. In this chapter we present different numerical methods for computing the function .(.) since it is known that this problem is ill-posed.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 01:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表