找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Intelligence in Expensive Optimization Problems; Yoel Tenne,Chi-Keong Goh Book 2010 Springer-Verlag Berlin Heidelberg 2010 a

[复制链接]
查看: 20362|回复: 58
发表于 2025-3-21 18:07:40 | 显示全部楼层 |阅读模式
书目名称Computational Intelligence in Expensive Optimization Problems
编辑Yoel Tenne,Chi-Keong Goh
视频videohttp://file.papertrans.cn/233/232498/232498.mp4
概述First book to introduce the emerging field of computational intelligence in expensive optimization problems.Provides both theoretical treatments and real-world insights gained by experience in computa
丛书名称Adaptation, Learning, and Optimization
图书封面Titlebook: Computational Intelligence in Expensive Optimization Problems;  Yoel Tenne,Chi-Keong Goh Book 2010 Springer-Verlag Berlin Heidelberg 2010 a
描述.In modern science and engineering, laboratory experiments are replaced by high fidelity and computationally expensive simulations. Using such simulations reduces costs and shortens development times but introduces new challenges to design optimization process. Examples of such challenges include limited computational resource for simulation runs, complicated response surface of the simulation inputs-outputs, and etc...Under such difficulties, classical optimization and analysis methods may perform poorly. This motivates the application of computational intelligence methods such as evolutionary algorithms, neural networks and fuzzy logic, which often perform well in such settings. This is the first book to introduce the emerging field of computational intelligence in expensive optimization problems. Topics covered include: dedicated implementations of evolutionary algorithms, neural networks and fuzzy logic. reduction of expensive evaluations (modelling, variable-fidelity, fitness inheritance), frameworks for optimization (model management, complexity control, model selection), parallelization of algorithms (implementation issues on clusters, grids, parallel machines), incorporatio
出版日期Book 2010
关键词algorithm; algorithms; computational intelligence; control; data mining; evolution; evolutionary algorithm
版次1
doihttps://doi.org/10.1007/978-3-642-10701-6
isbn_softcover978-3-642-26318-7
isbn_ebook978-3-642-10701-6Series ISSN 1867-4534 Series E-ISSN 1867-4542
issn_series 1867-4534
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

书目名称Computational Intelligence in Expensive Optimization Problems影响因子(影响力)




书目名称Computational Intelligence in Expensive Optimization Problems影响因子(影响力)学科排名




书目名称Computational Intelligence in Expensive Optimization Problems网络公开度




书目名称Computational Intelligence in Expensive Optimization Problems网络公开度学科排名




书目名称Computational Intelligence in Expensive Optimization Problems被引频次




书目名称Computational Intelligence in Expensive Optimization Problems被引频次学科排名




书目名称Computational Intelligence in Expensive Optimization Problems年度引用




书目名称Computational Intelligence in Expensive Optimization Problems年度引用学科排名




书目名称Computational Intelligence in Expensive Optimization Problems读者反馈




书目名称Computational Intelligence in Expensive Optimization Problems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:52:36 | 显示全部楼层
发表于 2025-3-22 03:30:21 | 显示全部楼层
,Die Eindämmung der Gewalt im Großraum,ution of computationally expensive optimization problems. Existing methods developed by other researchers or the authors’ group are overviewed and a new enhancement based on fitness inheritance is proposed. Whereas conventional evolutionary algorithms require a great number of calls to the evaluatio
发表于 2025-3-22 05:57:44 | 显示全部楼层
发表于 2025-3-22 11:19:21 | 显示全部楼层
Politik und globale Machtprojektion, reduce the number of function evaluations effectively. Although the approximation errors between the true function values and the approximation values are not small, the rough model can estimate the order relation of solutions with fair accuracy. By utilizing this nature of the rough model, we have
发表于 2025-3-22 16:48:25 | 显示全部楼层
Schriften zur Unternehmensentwicklung algorithms used in the field of computer experiments are based on Kriging (Gaussian process regression). Starting with a spatial predictor including a measure of uncertainty, they proceed by iteratively choosing the point maximizing a criterion which is a compromise between predicted performance an
发表于 2025-3-22 19:04:38 | 显示全部楼层
发表于 2025-3-22 21:34:20 | 显示全部楼层
https://doi.org/10.1007/978-3-322-90403-4e help of modern statistical techniques to create powerful strategies for expensive optimization. For example, it shows how the regularization of some parameters of the EDAs probabilistic models can yield dramatic improvements in efficiency. In this context a new class, Shrinkage EDAs, based on shri
发表于 2025-3-23 04:28:57 | 显示全部楼层
发表于 2025-3-23 07:06:06 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 13:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表