找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Intelligence; 11th International J Juan Julián Merelo,Jonathan Garibaldi,Kurosh Madan Conference proceedings 2021 Springer Na

[复制链接]
楼主: broach
发表于 2025-3-23 10:44:30 | 显示全部楼层
发表于 2025-3-23 14:38:01 | 显示全部楼层
Near Optimal Solving of the (N,–1)-puzzle Using Heuristics Based on Artificial Neural Networks explores configurations of the puzzle in the order determined by a heuristic that tries to estimate the minimum number of moves needed to reach the goal from the given configuration. To guarantee finding an optimal solution, the A* algorithm requires heuristics that estimate the number of moves fro
发表于 2025-3-23 19:12:39 | 显示全部楼层
发表于 2025-3-24 00:16:27 | 显示全部楼层
CVaR Q-Learningvalue-at-risk (CVaR). We describe a faster method for computing value iteration updates for CVaR markov decision processes (MDP). This improvement then opens doors for a sampling version of the algorithm, which we call CVaR Q-learning. In order to allow optimizing CVaR on large state spaces, we also
发表于 2025-3-24 06:12:59 | 显示全部楼层
发表于 2025-3-24 09:18:32 | 显示全部楼层
Introduction to Sequential Heteroscedastic Probabilistic Neural Networksork (SHPNN). The aforementioned algorithm is a variant of probabilistic neural networks (PNNs). This algorithm has the advantage of being structurally flexible to match the complexities of the data space. Another distinctive feature of this algorithm is the fact that it can achieve roughly the same
发表于 2025-3-24 11:14:53 | 显示全部楼层
发表于 2025-3-24 18:38:02 | 显示全部楼层
https://doi.org/10.1007/978-981-99-0385-6aluations. It takes advantage of the explorative capabilities of EGO ensuring a fast convergence at the beginning of the optimization procedure, as well as the flexibility and robustness of CMA-ES to exploit promising regions of the search space Precisely, HKG-LSM first uses the Kriging-based method
发表于 2025-3-24 20:58:59 | 显示全部楼层
发表于 2025-3-25 03:12:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 11:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表