找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Diffusion MRI; MICCAI Workshop, Ath Andrea Fuster,Aurobrata Ghosh,Marco Reisert Conference proceedings 2017 Springer Internat

[复制链接]
查看: 49478|回复: 57
发表于 2025-3-21 17:31:04 | 显示全部楼层 |阅读模式
书目名称Computational Diffusion MRI
副标题MICCAI Workshop, Ath
编辑Andrea Fuster,Aurobrata Ghosh,Marco Reisert
视频video
概述Careful mathematical derivations.Large number of rich full-color visualizations.Biologically or clinically relevant results
丛书名称Mathematics and Visualization
图书封面Titlebook: Computational Diffusion MRI; MICCAI Workshop, Ath Andrea Fuster,Aurobrata Ghosh,Marco Reisert Conference proceedings 2017 Springer Internat
描述.This volume offers a valuable starting point for anyone interested in learning computational diffusion MRI and mathematical methods for brain connectivity, while also sharing new perspectives and insights on the latest research challenges for those currently working in the field...Over the last decade, interest in diffusion MRI has virtually exploded. The technique provides unique insights into the microstructure of living tissue and enables in-vivo connectivity mapping of the brain. Computational techniques are key to the continued success and development of diffusion MRI and to its widespread transfer into the clinic, while new processing methods are essential to addressing issues at each stage of the diffusion MRI pipeline: acquisition, reconstruction, modeling and model fitting, image processing, fiber tracking, connectivity mapping, visualization, group studies and inference...These papers from the 2016 MICCAI Workshop “Computational Diffusion MRI” – which was intended to provide a snapshot of the latest developments within the highly active and growing field of diffusion MR – cover a wide range of topics, from fundamental theoretical work on mathematical modeling, to the dev
出版日期Conference proceedings 2017
关键词fiber tractography; medical image analysis; neuroimaging; connectomics; inverse problems; brain network a
版次1
doihttps://doi.org/10.1007/978-3-319-54130-3
isbn_softcover978-3-319-85326-0
isbn_ebook978-3-319-54130-3Series ISSN 1612-3786 Series E-ISSN 2197-666X
issn_series 1612-3786
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Computational Diffusion MRI影响因子(影响力)




书目名称Computational Diffusion MRI影响因子(影响力)学科排名




书目名称Computational Diffusion MRI网络公开度




书目名称Computational Diffusion MRI网络公开度学科排名




书目名称Computational Diffusion MRI被引频次




书目名称Computational Diffusion MRI被引频次学科排名




书目名称Computational Diffusion MRI年度引用




书目名称Computational Diffusion MRI年度引用学科排名




书目名称Computational Diffusion MRI读者反馈




书目名称Computational Diffusion MRI读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:50:31 | 显示全部楼层
Noise Floor Removal via Phase Correction of Complex Diffusion-Weighted Images: Influence on DTI andffusion signal. As a consequence, also the estimated diffusion metrics can be biased. We study the effect of phase correction, a procedure that re-establishes the Gaussianity of the noise distribution in DWIs by taking into account the corresponding phase images. We quantify the debiasing effects of
发表于 2025-3-22 01:45:56 | 显示全部楼层
Regularized Dictionary Learning with Robust Sparsity Fitting for Compressed Sensing Multishell HARD with a proposed . term to handle low signal-to-noise ratios at high . values. We combine the dictionary model for diffusion signals together with a multiscale (wavelet-based) spatial model on images for compressed sensing. To control overfitting of the dictionary to tracts with unknown orientations
发表于 2025-3-22 06:36:25 | 显示全部楼层
Denoising Diffusion-Weighted Images Using Grouped Iterative Hard Thresholding of Multi-Channel Framve analysis, it is often desirable to remove noise and at the same time preserve relevant image features. In this paper, we propose a tight wavelet frame based approach for edge-preserving denoising of DW images. Our approach (1) employs the unitary extension principle (UEP) to generate frames that
发表于 2025-3-22 10:26:58 | 显示全部楼层
发表于 2025-3-22 13:30:20 | 显示全部楼层
发表于 2025-3-22 21:03:37 | 显示全部楼层
Sensitivity of OGSE ActiveAx to Microstructural Dimensions on a Clinical Scanner,of techniques to measure axon diameterusing diffusion MR I have been proposed, majority of which uses single diffusion encoding (SDE) spin-echo sequence. However, recent theoretical research suggests that low-frequency oscillating gradient spin echo(OGSE ) offers benefits over SDE for imaging diamet
发表于 2025-3-23 00:09:04 | 显示全部楼层
发表于 2025-3-23 01:52:04 | 显示全部楼层
发表于 2025-3-23 07:18:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 10:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表