找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Diffusion MRI; International MICCAI Noemi Gyori,Jana Hutter,Fan Zhang Conference proceedings 2021 The Editor(s) (if applicabl

[复制链接]
楼主: mentor
发表于 2025-3-25 05:23:02 | 显示全部楼层
发表于 2025-3-25 09:16:53 | 显示全部楼层
发表于 2025-3-25 15:43:32 | 显示全部楼层
Towards Learned Optimal ,-Space Sampling in Diffusion MRIious results, the present work consolidates the above strategies into a unified estimation framework, in which the optimization is carried out with respect to both estimation model and sampling design .. The proposed solution offers substantial improvements in the quality of signal estimation as wel
发表于 2025-3-25 16:31:09 | 显示全部楼层
发表于 2025-3-25 21:13:29 | 显示全部楼层
发表于 2025-3-26 00:35:17 | 显示全部楼层
发表于 2025-3-26 07:02:08 | 显示全部楼层
发表于 2025-3-26 11:17:04 | 显示全部楼层
Diffusion MRI Fiber Orientation Distribution Function Estimation Using Voxel-Wise Spherical U-Net the signals corresponding to individual fibers. We compared our model with another deep learning approach based on a 3D convolutional neural network and a state-of-the-art approach—multi-shell multi-tissue constrained spherical deconvolution, on real data from Human Connectome Project and synthetic
发表于 2025-3-26 12:46:33 | 显示全部楼层
发表于 2025-3-26 18:10:10 | 显示全部楼层
DW-MRI Microstructure Model of Models Captured Via Single-Shell Bottleneck Deep Learningn to map a common basis among DW-MRI modeling approaches. We propose to capture a compact feature space in the form of a bottleneck that preserves common features to all methods and retrieve information from single shell DW-MRI. We train on 3D patches of 40 Human Connectome Project (HCP) subjects (.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 00:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表