找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Diffusion MRI; International MICCAI Noemi Gyori,Jana Hutter,Fan Zhang Conference proceedings 2021 The Editor(s) (if applicabl

[复制链接]
查看: 33362|回复: 54
发表于 2025-3-21 16:27:10 | 显示全部楼层 |阅读模式
书目名称Computational Diffusion MRI
副标题International MICCAI
编辑Noemi Gyori,Jana Hutter,Fan Zhang
视频video
概述Presents the latest developments in the highly active and rapidly growing field of diffusion MRI.Covers a broad range of topics, from the mathematical foundations of the diffusion process and signal a
丛书名称Mathematics and Visualization
图书封面Titlebook: Computational Diffusion MRI; International MICCAI Noemi Gyori,Jana Hutter,Fan Zhang Conference proceedings 2021 The Editor(s) (if applicabl
描述This book gathers papers presented at the Workshop on Computational Diffusion MRI, CDMRI 2020, held under the auspices of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), which took place virtually on October 8th, 2020, having originally been planned to take place in Lima, Peru..This book presents the latest developments in the highly active and rapidly growing field of diffusion MRI. While offering new perspectives on the most recent research challenges in the field, the selected articles also provide a valuable starting point for anyone interested in learning computational techniques for diffusion MRI. The book includes rigorous mathematical derivations, a large number of rich, full-colour visualizations, and clinically relevant results. As such, it is of interest to researchers and practitioners in the fields of computer science, MRI physics, and applied mathematics. The reader will find numerous contributions coveringa broad range of topics, from the mathematical foundations of the diffusion process and signal generation to new computational methods and estimation techniques for the in-vivo recovery of microstructural and conn
出版日期Conference proceedings 2021
关键词diffusion MRI; multidimensional diffusion MRI; combined diffusion-relaxometry MRI; computational techni
版次1
doihttps://doi.org/10.1007/978-3-030-73018-5
isbn_softcover978-3-030-73020-8
isbn_ebook978-3-030-73018-5Series ISSN 1612-3786 Series E-ISSN 2197-666X
issn_series 1612-3786
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Computational Diffusion MRI影响因子(影响力)




书目名称Computational Diffusion MRI影响因子(影响力)学科排名




书目名称Computational Diffusion MRI网络公开度




书目名称Computational Diffusion MRI网络公开度学科排名




书目名称Computational Diffusion MRI被引频次




书目名称Computational Diffusion MRI被引频次学科排名




书目名称Computational Diffusion MRI年度引用




书目名称Computational Diffusion MRI年度引用学科排名




书目名称Computational Diffusion MRI读者反馈




书目名称Computational Diffusion MRI读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:14:41 | 显示全部楼层
发表于 2025-3-22 01:10:06 | 显示全部楼层
Typisierung der Anwendungsfällepproach able to adapt the position and the shape of the input streamlines. Our novel approach promotes higher spatial coverage and lower number of IBs while not affecting VBs, allowing microstructure-informed filtering and tractography techniques to overcome the limitation imposed by poorly reconstructed input tractograms.
发表于 2025-3-22 07:43:09 | 显示全部楼层
发表于 2025-3-22 12:18:38 | 显示全部楼层
发表于 2025-3-22 13:08:45 | 显示全部楼层
Improving Tractography Accuracy Using Dynamic Filteringpproach able to adapt the position and the shape of the input streamlines. Our novel approach promotes higher spatial coverage and lower number of IBs while not affecting VBs, allowing microstructure-informed filtering and tractography techniques to overcome the limitation imposed by poorly reconstructed input tractograms.
发表于 2025-3-22 17:26:14 | 显示全部楼层
Q-Space Quantitative Diffusion MRI Measures Using a Stretched-Exponential Representationacement (QMFD). The stretched-exponential representation enables the handling of the diffusion contributions from a higher .-value regime under a non-Gaussian assumption, which can be useful in diagnosing or prognosis of neurodegenerative diseases in the early stages. Numerical implementation of the method is freely available at ..
发表于 2025-3-22 21:45:51 | 显示全部楼层
发表于 2025-3-23 03:43:17 | 显示全部楼层
发表于 2025-3-23 06:46:27 | 显示全部楼层
Steuergerechtigkeit und Gewinnermittlung recovering the full DW images as a constrained variational problem regularized by multidimensional total variation. The problem can be solved efficiently using the alternating direction method of multipliers (ADMM). Experiment results based on SIDE data of adults indicate that DW images can be reco
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 23:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表