找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Algebraic Number Theory; Michael E. Pohst Book 1993 Springer Basel AG 1993 Algebra.coding theory.cryptography.finite field.g

[复制链接]
楼主: culinary
发表于 2025-3-23 13:38:44 | 显示全部楼层
发表于 2025-3-23 14:54:24 | 显示全部楼层
发表于 2025-3-23 20:33:06 | 显示全部楼层
发表于 2025-3-24 01:56:54 | 显示全部楼层
Damped Single Degree-of-Freedom Systemeterminant of a transition matrix from a basis of .. to a basis of ... Prom chapters III, IV we recall that ∣d(.)∣ = .(..)., ∣..∣ = .(..).. Since with ω also .ω is an integer of . the following Lemma is essentially a consequence of Lemma 1.6 in chapter III.
发表于 2025-3-24 05:21:13 | 显示全部楼层
发表于 2025-3-24 08:24:00 | 显示全部楼层
Algebraic number fields, we will need the counterpart of the rational integers in . These integers of . are defined as those elements of . which are .., i.e. zeros of monic non-constant polynomials of ℤ[.]. From (27) we conclude that . itself is an integer of . We proceed to show that the integers of . form a ring.
发表于 2025-3-24 13:39:32 | 显示全部楼层
发表于 2025-3-24 17:54:18 | 显示全部楼层
发表于 2025-3-24 20:32:27 | 显示全部楼层
https://doi.org/10.1007/978-1-4615-7918-2rs .. of a number field . (.), the computation of the ... of ., and the computation of the ... of . These three invariants of . are essential for describing the differences between the arithmetic in . and the arithmetic in the rational numbers ℚ. They are used in many applications, for example, in s
发表于 2025-3-24 23:51:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 12:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表