找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Algebraic Number Theory; Michael E. Pohst Book 1993 Springer Basel AG 1993 Algebra.coding theory.cryptography.finite field.g

[复制链接]
查看: 9271|回复: 39
发表于 2025-3-21 16:39:26 | 显示全部楼层 |阅读模式
书目名称Computational Algebraic Number Theory
编辑Michael E. Pohst
视频video
丛书名称Oberwolfach Seminars
图书封面Titlebook: Computational Algebraic Number Theory;  Michael E. Pohst Book 1993 Springer Basel AG 1993 Algebra.coding theory.cryptography.finite field.g
描述Computational algebraic number theory has been attracting broad interest in the last few years due to its potential applications in coding theory and cryptography. For this reason, the Deutsche Mathematiker Vereinigung initiated an introductory graduate seminar on this topic in Düsseldorf. The lectures given there by the author served as the basis for this book which allows fast access to the state of the art in this area. Special emphasis has been placed on practical algorithms - all developed in the last five years - for the computation of integral bases, the unit group and the class group of arbitrary algebraic number fields. Contents: Introduction • Topics from finite fields • Arithmetic and polynomials • Factorization of polynomials • Topics from the geometry of numbers • Hermite normal form • Lattices • Reduction • Enumeration of lattice points • Algebraic number fields • Introduction • Basic Arithmetic • Computation of an integral basis • Integral closure • Round-Two-Method • Round-Four-Method • Computation of the unit group • Dirichlet‘s unit theorem and a regulator bound • Two methods for computing r independent units • Fundamental unit computation • Computation of the cla
出版日期Book 1993
关键词Algebra; coding theory; cryptography; finite field; geometry; mathematics; number theory
版次1
doihttps://doi.org/10.1007/978-3-0348-8589-8
isbn_softcover978-3-7643-2913-6
isbn_ebook978-3-0348-8589-8Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightSpringer Basel AG 1993
The information of publication is updating

书目名称Computational Algebraic Number Theory影响因子(影响力)




书目名称Computational Algebraic Number Theory影响因子(影响力)学科排名




书目名称Computational Algebraic Number Theory网络公开度




书目名称Computational Algebraic Number Theory网络公开度学科排名




书目名称Computational Algebraic Number Theory被引频次




书目名称Computational Algebraic Number Theory被引频次学科排名




书目名称Computational Algebraic Number Theory年度引用




书目名称Computational Algebraic Number Theory年度引用学科排名




书目名称Computational Algebraic Number Theory读者反馈




书目名称Computational Algebraic Number Theory读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:43:47 | 显示全部楼层
Topics from finite fields, and . a . of ., i.e. .. = 〈.〉. In general, arithmetic in . will be done by using two representations for its elements .:(i).,(ii)..Then addition and subtraction is done by the first, multiplication and division by the second representation. Thus all we need are two tables allowing to switch from on
发表于 2025-3-22 03:46:22 | 显示全部楼层
Topics from the geometry of numbers,ater chapters. All results can be easily generalized to principal entire rings . For practical calculations, however, we need a Euclidean division algorithm in . for the computation of the greatest common divisor of two elements. Proofs of Lemmata 1.1, 1.2, 1.6, 1.7 and Theorem 1.3, 1.5 for principa
发表于 2025-3-22 05:29:40 | 显示全部楼层
Algebraic number fields,called the . of .. Clearly, ℚ(.) = . ≅ ℚ[.].(.)ℚ[.], and the successive powers l, .,…, .. form a basis of . over ℚ. For describing the arithmetic in . we will need the counterpart of the rational integers in . These integers of . are defined as those elements of . which are .., i.e. zeros of monic n
发表于 2025-3-22 09:19:18 | 显示全部楼层
Computation of an integral basis,… until .. = .. for some . ∈ ℤ.. Prom our considerations in chapter III we know that . is in ℤ. since that quotient equals the absolute value of the determinant of a transition matrix from a basis of .. to a basis of ... Prom chapters III, IV we recall that ∣d(.)∣ = .(..)., ∣..∣ = .(..).. Since with
发表于 2025-3-22 16:14:51 | 显示全部楼层
发表于 2025-3-22 19:47:08 | 显示全部楼层
Book 1993ion • Basic Arithmetic • Computation of an integral basis • Integral closure • Round-Two-Method • Round-Four-Method • Computation of the unit group • Dirichlet‘s unit theorem and a regulator bound • Two methods for computing r independent units • Fundamental unit computation • Computation of the cla
发表于 2025-3-22 23:46:36 | 显示全部楼层
发表于 2025-3-23 03:18:47 | 显示全部楼层
Introduction,olving non-linear Diophantine equations, in factoring with the number field sieve and in carrying out numerical experiments in number fields. We illustrate their importance by two introductory examples.
发表于 2025-3-23 05:57:31 | 显示全部楼层
https://doi.org/10.1007/978-1-4615-7918-2olving non-linear Diophantine equations, in factoring with the number field sieve and in carrying out numerical experiments in number fields. We illustrate their importance by two introductory examples.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 08:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表