找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Compression Schemes for Mining Large Datasets; A Machine Learning P T. Ravindra Babu,M. Narasimha Murty,S.V. Subrahman Book 2013 Springer-V

[复制链接]
楼主: 平凡人
发表于 2025-3-26 20:56:43 | 显示全部楼层
发表于 2025-3-27 03:36:12 | 显示全部楼层
Trans-European Telecommunication Networks, features in the given representation of patterns, we would still be able to generate an abstraction that is as accurate in classification as the one with original feature set. In this chapter, we propose a lossy compression scheme. We demonstrate its efficiency and accuracy on practical datasets. T
发表于 2025-3-27 06:42:05 | 显示全部楼层
发表于 2025-3-27 13:08:20 | 显示全部楼层
发表于 2025-3-27 17:21:30 | 显示全部楼层
Product Mix and Diversification,ucing the features include conventional feature selection and extraction methods, frequent item support-based methods, and optimal feature selection approaches. In earlier chapters, we discussed feature selection based on frequent items. In the present chapter, we combine a nonlossy compression sche
发表于 2025-3-27 19:29:47 | 显示全部楼层
Product Mix and Diversification,tems. Big data is characterized by huge volumes of data that are not easily amenable for generating abstraction; variety of data formats, data frequency, types of data, and their integration; real or near-real time data processing for generating business or scientific value depending on nature of da
发表于 2025-3-27 22:47:41 | 显示全部楼层
Compression Schemes for Mining Large Datasets978-1-4471-5607-9Series ISSN 2191-6586 Series E-ISSN 2191-6594
发表于 2025-3-28 04:49:32 | 显示全部楼层
发表于 2025-3-28 08:56:48 | 显示全部楼层
978-1-4471-7055-6Springer-Verlag London 2013
发表于 2025-3-28 14:28:18 | 显示全部楼层
T. Ravindra Babu,M. Narasimha Murty,S.V. SubrahmanExamines all aspects of data abstraction generation using a least number of database scans.Discusses compressing data through novel lossy and non-lossy schemes.Proposes schemes for carrying out cluste
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 05:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表