找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Compression Schemes for Mining Large Datasets; A Machine Learning P T. Ravindra Babu,M. Narasimha Murty,S.V. Subrahman Book 2013 Springer-V

[复制链接]
楼主: 平凡人
发表于 2025-3-25 04:38:16 | 显示全部楼层
发表于 2025-3-25 07:41:38 | 显示全部楼层
https://doi.org/10.1007/978-3-319-77926-3arious aspects of compression schemes both in abstract sense and as practical implementation. We provide a brief summary of content of each chapter of the book and discuss its overall organization. We provide literature for further study at the end.
发表于 2025-3-25 12:07:21 | 显示全部楼层
https://doi.org/10.1057/9780230210660fication happens to be a fitness function. We provide a few application scenarios in data mining. We provide theoretical discussions on the scheme. Bibliographic notes provide a brief discussion on important relevant references. A list of references is provided in the end.
发表于 2025-3-25 18:31:58 | 显示全部楼层
https://doi.org/10.1007/978-3-030-39037-2 essence, the approach emphasizes exploitation of domain knowledge in mining large datasets, which in the present case results in significant compaction in the data and multiclass classification. We provide a discussion on relevant literature and a list of references at the end of the chapter.
发表于 2025-3-25 20:50:28 | 显示全部楼层
Introduction,arious aspects of compression schemes both in abstract sense and as practical implementation. We provide a brief summary of content of each chapter of the book and discuss its overall organization. We provide literature for further study at the end.
发表于 2025-3-26 00:47:23 | 显示全部楼层
Run-Length-Encoded Compression Scheme,fication happens to be a fitness function. We provide a few application scenarios in data mining. We provide theoretical discussions on the scheme. Bibliographic notes provide a brief discussion on important relevant references. A list of references is provided in the end.
发表于 2025-3-26 06:51:09 | 显示全部楼层
发表于 2025-3-26 09:54:29 | 显示全部楼层
发表于 2025-3-26 12:54:42 | 显示全部楼层
发表于 2025-3-26 17:46:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 05:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表