找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Networks XI; Proceedings of the 1 Hugo Barbosa,Jesus Gomez-Gardenes,Marcos Oliveira Conference proceedings 2020 The Editor(s) (if a

[复制链接]
查看: 27075|回复: 46
发表于 2025-3-21 16:26:07 | 显示全部楼层 |阅读模式
书目名称Complex Networks XI
副标题Proceedings of the 1
编辑Hugo Barbosa,Jesus Gomez-Gardenes,Marcos Oliveira
视频video
丛书名称Springer Proceedings in Complexity
图书封面Titlebook: Complex Networks XI; Proceedings of the 1 Hugo Barbosa,Jesus Gomez-Gardenes,Marcos Oliveira Conference proceedings 2020 The Editor(s) (if a
描述This book aims to bring together researchers and practitioners from diverse disciplines—from sociology, biology, physics, and computer science—who share a passion to better understand the interdependencies within and across systems. This volume contains contributions presented at the 11th International Conference on Complex Networks (CompleNet) in Exeter, United Kingdom, 31 March - 3 April 2020. CompleNet is a venue for discussing ideas and findings about all types of networks, from biological, to technological, to informational and social. It is this interdisciplinary nature of complex networks that CompleNet aims to explore and celebrate.. .
出版日期Conference proceedings 2020
关键词Computer Science; Informatics; Conference Proceedings; Research; Applications; Graph Theory; Complex Syste
版次1
doihttps://doi.org/10.1007/978-3-030-40943-2
isbn_softcover978-3-030-40945-6
isbn_ebook978-3-030-40943-2Series ISSN 2213-8684 Series E-ISSN 2213-8692
issn_series 2213-8684
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Complex Networks XI影响因子(影响力)




书目名称Complex Networks XI影响因子(影响力)学科排名




书目名称Complex Networks XI网络公开度




书目名称Complex Networks XI网络公开度学科排名




书目名称Complex Networks XI被引频次




书目名称Complex Networks XI被引频次学科排名




书目名称Complex Networks XI年度引用




书目名称Complex Networks XI年度引用学科排名




书目名称Complex Networks XI读者反馈




书目名称Complex Networks XI读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:14:09 | 显示全部楼层
发表于 2025-3-22 03:11:21 | 显示全部楼层
发表于 2025-3-22 04:56:37 | 显示全部楼层
发表于 2025-3-22 10:00:28 | 显示全部楼层
Indications for Stable Fixationld networks. Mathematical graph theory helps to understand and predict their behavior. This paper examines and compares the structural properties such as the small-world effect, the clustering coefficient and the degree distribution of Erdos-Renyi random networks with some real-world networks. Besid
发表于 2025-3-22 14:33:21 | 显示全部楼层
Stable Fixation of the Hand and Wristange aiming to bring the properties to an acceptable range is called . (NTRLA). We faced an NTRLA problem when we were investigating ways to improve the efficiency of large power grids. In the search for solutions, we developed strategies to add new edges in unsupervised automatic applications. The
发表于 2025-3-22 19:57:02 | 显示全部楼层
发表于 2025-3-22 21:52:51 | 显示全部楼层
Stable Fixation of the Hand and Wrist implies that these nodes become too interdependent on each other. For instance, in trade networks, the possible shortage of flow between two countries may lead to the deficit of goods in the importing country but, on the other hand, it may also affect the financial stability of the exporting countr
发表于 2025-3-23 01:55:14 | 显示全部楼层
The Arf-Kervaire Invariant via ,n the graph to sample relationships between vertices. These methods rely on symmetric affinities between nodes and do not translate well to directed graphs. We propose a method to learn vector embeddings of nodes in a graph as well as the parameters of an asymmetric similarity function that can be u
发表于 2025-3-23 08:05:42 | 显示全部楼层
The Arf-Kervaire Invariant via ,ks, called ., which can be considered a particular case of multiplex and multi-layer networks. We propose two . spectral methods for identifying communities within a finite sequence of networks. We provide theoretical results to quantify the performance of the proposed methods when individual networ
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 08:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表