找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Data Modeling and Computationally Intensive Statistical Methods; Pietro Mantovan,Piercesare Secchi Book 2010 Springer-Verlag Milan

[复制链接]
楼主: Enkephalin
发表于 2025-3-25 03:42:35 | 显示全部楼层
发表于 2025-3-25 08:26:49 | 显示全部楼层
发表于 2025-3-25 14:13:22 | 显示全部楼层
发表于 2025-3-25 19:31:52 | 显示全部楼层
Mixed-effects modelling of Kevlar fibre failure times through Bayesian non-parametrics,d by the non-parametric model, and is inferred from the data. Compared to previous results, we obtain narrower interval estimates of the quantiles of the predictive survival function. Other diagnostic plots, such as predictive tail probabilities and Bayesian residuals, show a good agreement between the model and the data.
发表于 2025-3-25 20:20:24 | 显示全部楼层
Predictive densities and prediction limits based on predictive likelihoods,ome specific applications, these solution usually improve on those ones based on the plug-in procedure. However, the associated predictive densities and prediction limits do not correspond to the optimal frequentist solutions already described in the literature.
发表于 2025-3-26 03:50:01 | 显示全部楼层
发表于 2025-3-26 07:36:43 | 显示全部楼层
Mixed-effects modelling of Kevlar fibre failure times through Bayesian non-parametrics,spool, subject to different stress levels. We propose a semi-parametric modelling by letting the error distribution be a shape-scale mixture of Weibull densities, the mixing measure being a normalised generalised gamma measure. We obtain posterior estimates of the regression parameter and also of cr
发表于 2025-3-26 08:49:51 | 显示全部楼层
发表于 2025-3-26 13:40:10 | 显示全部楼层
Exploitation, integration and statistical analysis of the Public Health Database and STEMI Archive Acute Myocardial Infarction”. The main goal of the Programme is the construction and statistical analysis of data coming from the integration of complex clinical and administrative databases concerning patients with Acute Coronary Syndromes treated in the Lombardia region. Clinical data sets arise f
发表于 2025-3-26 20:12:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 04:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表