找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Analysis and Geometry; Vincenzo Ancona,Alessandro Silva Book 1993 Springer Science+Business Media New York 1993 Invariant.Manifold

[复制链接]
楼主: children
发表于 2025-3-28 17:32:12 | 显示全部楼层
A Problem List on Vector Bundles, volume). Such lists stimulate research, and give more opportunities for researchers to disseminate their results among interested people. Furthermore, such lists can include relevant references, not all of which might be known to a young, isolated researcher.
发表于 2025-3-28 20:30:52 | 显示全部楼层
Overview: 978-1-4757-9773-2978-1-4757-9771-8
发表于 2025-3-29 00:13:38 | 显示全部楼层
,Wo komme ich her – lokal und kulturell?,e induced map of local rings . . → . . has property P. In this chapter we give a criterion for ℙ(.) being constructible (resp., Zariski open) in .. Moreover, we verify this criterion for a wide class of properties P.
发表于 2025-3-29 04:22:28 | 显示全部楼层
https://doi.org/10.57088/978-3-7329-9209-6trum of . .(Ω) (corona problem) has attracted some attention. The answer is known to be affirmative for many open sets in C ; see Ref. 4 for a discussion. The answer is not known in ℂ. . ≥ 2 even for the ball or the polydisk.
发表于 2025-3-29 09:11:04 | 显示全部楼层
发表于 2025-3-29 11:25:33 | 显示全部楼层
https://doi.org/10.1007/978-3-662-58125-4 volume). Such lists stimulate research, and give more opportunities for researchers to disseminate their results among interested people. Furthermore, such lists can include relevant references, not all of which might be known to a young, isolated researcher.
发表于 2025-3-29 17:28:49 | 显示全部楼层
Wissenschaft und Verantwortung,Let . be a complex manifold of dimension . and let .→ . be a holomorphic vector bundle. Given a complex submanifold . of codimension 1, let res. be the residue homomorphism from ...) to ...), where ...) denotes the ∂0304-cohomology group of type (.). The purpose of this chapter is to establish the following theorem.
发表于 2025-3-29 21:28:59 | 显示全部楼层
发表于 2025-3-30 00:43:29 | 显示全部楼层
发表于 2025-3-30 07:12:05 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-11-16 13:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表