找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complete Minimal Surfaces of Finite Total Curvature; Kichoon Yang Book 1994 Springer Science+Business Media Dordrecht 1994 Minimal surface

[复制链接]
查看: 12183|回复: 35
发表于 2025-3-21 18:02:00 | 显示全部楼层 |阅读模式
书目名称Complete Minimal Surfaces of Finite Total Curvature
编辑Kichoon Yang
视频video
丛书名称Mathematics and Its Applications
图书封面Titlebook: Complete Minimal Surfaces of Finite Total Curvature;  Kichoon Yang Book 1994 Springer Science+Business Media Dordrecht 1994 Minimal surface
描述This monograph contains an exposition of the theory of minimal surfaces in Euclidean space, with an emphasis on complete minimal surfaces of finite total curvature. Our exposition is based upon the philosophy that the study of finite total curvature complete minimal surfaces in R3, in large measure, coincides with the study of meromorphic functions and linear series on compact Riemann sur­ faces. This philosophy is first indicated in the fundamental theorem of Chern and Osserman: A complete minimal surface M immersed in R3 is of finite total curvature if and only if M with its induced conformal structure is conformally equivalent to a compact Riemann surface Mg punctured at a finite set E of points and the tangential Gauss map extends to a holomorphic map Mg _ P2. Thus a finite total curvature complete minimal surface in R3 gives rise to a plane algebraic curve. Let Mg denote a fixed but otherwise arbitrary compact Riemann surface of genus g. A positive integer r is called a puncture number for Mg if Mg can be conformally immersed into R3 as a complete finite total curvature minimal surface with exactly r punctures; the set of all puncture numbers for Mg is denoted by P (M ). For e
出版日期Book 1994
关键词Minimal surface; Riemann surfaces; algebraic varieties; crystallography; curvature; differential geometry
版次1
doihttps://doi.org/10.1007/978-94-017-1104-3
isbn_softcover978-90-481-4443-3
isbn_ebook978-94-017-1104-3
copyrightSpringer Science+Business Media Dordrecht 1994
The information of publication is updating

书目名称Complete Minimal Surfaces of Finite Total Curvature影响因子(影响力)




书目名称Complete Minimal Surfaces of Finite Total Curvature影响因子(影响力)学科排名




书目名称Complete Minimal Surfaces of Finite Total Curvature网络公开度




书目名称Complete Minimal Surfaces of Finite Total Curvature网络公开度学科排名




书目名称Complete Minimal Surfaces of Finite Total Curvature被引频次




书目名称Complete Minimal Surfaces of Finite Total Curvature被引频次学科排名




书目名称Complete Minimal Surfaces of Finite Total Curvature年度引用




书目名称Complete Minimal Surfaces of Finite Total Curvature年度引用学科排名




书目名称Complete Minimal Surfaces of Finite Total Curvature读者反馈




书目名称Complete Minimal Surfaces of Finite Total Curvature读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:39:53 | 显示全部楼层
发表于 2025-3-22 03:58:26 | 显示全部楼层
发表于 2025-3-22 05:09:49 | 显示全部楼层
发表于 2025-3-22 10:08:13 | 显示全部楼层
发表于 2025-3-22 13:35:08 | 显示全部楼层
发表于 2025-3-22 18:45:09 | 显示全部楼层
finite total curvature. Our exposition is based upon the philosophy that the study of finite total curvature complete minimal surfaces in R3, in large measure, coincides with the study of meromorphic functions and linear series on compact Riemann sur­ faces. This philosophy is first indicated in th
发表于 2025-3-22 23:03:14 | 显示全部楼层
发表于 2025-3-23 02:13:19 | 显示全部楼层
Minimal Surfaces with Finite Total Curvature,nimal surfaces. Given a compact Riemann surface .. of genus ., a positive integer . is called a puncture number of .. if .. can be conformally immersed in .. as an algebraic minimal surface with exactly . punctures. The set of all puncture numbers for .. is denoted by . (..).
发表于 2025-3-23 07:51:29 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-2 05:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表