找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cohomology of Groups; Kenneth S. Brown Textbook 1982 Springer-Verlag New York Inc. 1982 Abelian group.Cohomology.Groups.Gruppe (Math.).Koh

[复制链接]
楼主: 两边在扩散
发表于 2025-3-27 00:27:45 | 显示全部楼层
发表于 2025-3-27 04:37:42 | 显示全部楼层
发表于 2025-3-27 09:09:50 | 显示全部楼层
0072-5285 bra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology. The basics of the subject are given (along with exercises) before the author discusses more specialized topics.978-1-4684-9327-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
发表于 2025-3-27 10:58:32 | 显示全部楼层
发表于 2025-3-27 14:54:20 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-1406-4ed algebraic topology. The reader is advised to skip this section (or skim it lightly) and refer back to it as necessary. We will omit some of the proofs; these are either easy or else can be found in standard texts, such as Dold [1972], Spanier [1966], or MacLane [1963].
发表于 2025-3-27 18:07:23 | 显示全部楼层
https://doi.org/10.1007/978-3-663-05589-1.′. Note that if . is projective over . and .′ is projective over .′ then . ⊗ .′ is projective over .[. × .′]. In fact, it suffices to verify this in the case where . = . and .′ = .′, in which case the assertion follows from the obvious isomorphism . ⊗ .′ ≈ .[. × .′].
发表于 2025-3-27 23:54:11 | 显示全部楼层
https://doi.org/10.1057/9780230617001properties and that cohomology has “dual” properties. If . is finite, however, then homology and cohomology seem to have . properties rather than dual ones. For example, since every subgroup . of a finite group . has finite index, we have restriction and corestriction maps for . subgroups, in both h
发表于 2025-3-28 05:37:08 | 显示全部楼层
发表于 2025-3-28 08:28:02 | 显示全部楼层
发表于 2025-3-28 12:00:52 | 显示全部楼层
Separatism and Sovereignty in the New Europe. In the general case, one might hope to “explain” the high-dimensional cohomology of Γ in terms of the torsion in Γ. (This is analogous to the situation of Chapter IX, where we tried to explain the non-integrality of χ(Γ) in terms of the torsion in Γ.)
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 15:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表