找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cohesive Subgraph Search Over Large Heterogeneous Information Networks; Yixiang Fang,Kai Wang,Wenjie Zhang Book 2022 The Author(s), under

[复制链接]
查看: 26205|回复: 38
发表于 2025-3-21 19:30:01 | 显示全部楼层 |阅读模式
书目名称Cohesive Subgraph Search Over Large Heterogeneous Information Networks
编辑Yixiang Fang,Kai Wang,Wenjie Zhang
视频video
丛书名称SpringerBriefs in Computer Science
图书封面Titlebook: Cohesive Subgraph Search Over Large Heterogeneous Information Networks;  Yixiang Fang,Kai Wang,Wenjie Zhang Book 2022 The Author(s), under
描述.This SpringerBrief provides the first systematic review of the existing works of cohesive subgraph search (CSS) over large heterogeneous information networks (HINs). It also covers the research breakthroughs of this area, including models, algorithms and comparison studies in recent years. This SpringerBrief offers a list of promising future research directions of performing CSS over large HINs..The authors first classify the existing works of CSS over HINs according to the classic cohesiveness metrics such as core, truss, clique, connectivity, density, etc., and then extensively review the specific models and their corresponding search solutions in each group. Note that since the bipartite network is a special case of HINs, all the models developed for general HINs can be directly applied to bipartite networks, but the models customized for bipartite networks may not be easily extended for other general HINs due to their restricted settings. The authors also analyze and compare these cohesive subgraph models (CSMs) and solutions systematically. Specifically, the authors compare different groups of CSMs and analyze both their similarities and differences, from multiple perspective
出版日期Book 2022
关键词cohesive subgraph search; heterogeneous information networks; heterogeneous graphs; dense subgraphs; gra
版次1
doihttps://doi.org/10.1007/978-3-030-97568-5
isbn_softcover978-3-030-97567-8
isbn_ebook978-3-030-97568-5Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2022
The information of publication is updating

书目名称Cohesive Subgraph Search Over Large Heterogeneous Information Networks影响因子(影响力)




书目名称Cohesive Subgraph Search Over Large Heterogeneous Information Networks影响因子(影响力)学科排名




书目名称Cohesive Subgraph Search Over Large Heterogeneous Information Networks网络公开度




书目名称Cohesive Subgraph Search Over Large Heterogeneous Information Networks网络公开度学科排名




书目名称Cohesive Subgraph Search Over Large Heterogeneous Information Networks被引频次




书目名称Cohesive Subgraph Search Over Large Heterogeneous Information Networks被引频次学科排名




书目名称Cohesive Subgraph Search Over Large Heterogeneous Information Networks年度引用




书目名称Cohesive Subgraph Search Over Large Heterogeneous Information Networks年度引用学科排名




书目名称Cohesive Subgraph Search Over Large Heterogeneous Information Networks读者反馈




书目名称Cohesive Subgraph Search Over Large Heterogeneous Information Networks读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:07:39 | 显示全部楼层
发表于 2025-3-22 04:05:52 | 显示全部楼层
Harry T. Lawless,Hildegarde Heymannhe presentation. Before reviewing the specific models and solutions in the following chapters, in this chapter we first formally introduce the data models of HINs and bipartite networks, and then review several typical classic CSMs on homogeneous networks, including .-core, .-truss, .-clique, .-edge
发表于 2025-3-22 06:05:36 | 显示全部楼层
Harry T. Lawless,Hildegarde Heymanny modeled as bipartite networks. When analyzing bipartite networks, CSMs and CSS techniques play an important role in many aspects including network measurement, dense region discovering, and network reinforcement. To meet the high demands in the era of big data, novel CSMs and CSS solutions over bi
发表于 2025-3-22 11:40:36 | 显示全部楼层
Harry T. Lawless,Hildegarde Heymann, forming numerous, large, interconnected, and sophisticated networks, which are often called heterogeneous information networks (HINs) in the literature. For instance, Twitter contains 326 million monthly active users in over 160 countries, and they generate over 500 million daily tweets, including
发表于 2025-3-22 13:01:17 | 显示全部楼层
发表于 2025-3-22 18:16:01 | 显示全部楼层
发表于 2025-3-23 01:09:35 | 显示全部楼层
发表于 2025-3-23 01:24:55 | 显示全部楼层
Cohesive Subgraph Search Over Large Heterogeneous Information Networks978-3-030-97568-5Series ISSN 2191-5768 Series E-ISSN 2191-5776
发表于 2025-3-23 07:50:43 | 显示全部楼层
https://doi.org/10.1007/978-3-030-97568-5cohesive subgraph search; heterogeneous information networks; heterogeneous graphs; dense subgraphs; gra
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 11:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表