找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cognitive Computing – ICCC 2022; 6th International Co Yujiu Yang,Xiaohui Wang,Liang-Jie Zhang Conference proceedings 2022 The Editor(s) (if

[复制链接]
楼主: 贬损
发表于 2025-3-23 13:35:51 | 显示全部楼层
发表于 2025-3-23 17:02:08 | 显示全部楼层
978-3-031-23584-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-23 21:41:21 | 显示全部楼层
发表于 2025-3-24 01:09:49 | 显示全部楼层
Jean-Numa Ducange,Elisa Marcobellirvice dialogue data, which effectively improves the matching accuracy of the framework. We conduct extensive experiments on CHUZHOU and EIP customer service questioning datasets from KONKA. The result shows that CFTM outperforms baselines across all metrics, achieving a 2.5 improvement in F1-Score a
发表于 2025-3-24 05:22:13 | 显示全部楼层
https://doi.org/10.1007/978-94-009-8040-2ing in business systems. By observing the characteristics of mapping data in business systems, we firstly use FastText to learn word representation containing semantic information, and then adopt the LSTM model to extract features for text classification automatically. Experimental results show that
发表于 2025-3-24 08:49:06 | 显示全部楼层
发表于 2025-3-24 10:54:43 | 显示全部楼层
发表于 2025-3-24 18:33:27 | 显示全部楼层
Automated Data Mapping Based on FastText and LSTM for Business Systemsing in business systems. By observing the characteristics of mapping data in business systems, we firstly use FastText to learn word representation containing semantic information, and then adopt the LSTM model to extract features for text classification automatically. Experimental results show that
发表于 2025-3-24 21:44:12 | 显示全部楼层
发表于 2025-3-25 03:04:15 | 显示全部楼层
Solving a Cloze Test for Generative Commonsense Question Answerings are tackling the answer generation of commonsense questions, which is more difficult than multiple-choice. This motivates us to delve into the answer generation ability of pre-trained language models (PLMs). Other than utilizing knowledge bases to extract commonsense-related knowledge to answer co
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 16:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表