找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classification and Multivariate Analysis for Complex Data Structures; Bernard Fichet,Domenico Piccolo,Maurizio Vichi Conference proceeding

[复制链接]
楼主: iniquity
发表于 2025-3-28 15:38:09 | 显示全部楼层
Efficient Incorporation of Additional Information to Classification RulesWe propose and discuss improved classification rules when a subset of the predictors is known to be ordered. We compare the performance of the new rules with other standard rules in a restricted normal setting using simulation experiments and real data exposing their good performance.
发表于 2025-3-28 20:53:36 | 显示全部楼层
Classification and Multivariate Analysis for Complex Data Structures978-3-642-13312-1Series ISSN 1431-8814 Series E-ISSN 2198-3321
发表于 2025-3-28 23:39:41 | 显示全部楼层
发表于 2025-3-29 06:09:18 | 显示全部楼层
https://doi.org/10.1007/978-3-031-09581-8exploratory tools of Multidimensional Data Analysis is the basis of different research strategies, proposed by the authors, combining the common estimation method with its geometrical representation. Here we present a systematic and unitary review of some of these methodologies by taking into accoun
发表于 2025-3-29 09:22:07 | 显示全部楼层
发表于 2025-3-29 13:13:18 | 显示全部楼层
Herco Fonteijn,Arie van der Lugtocess, and it plays a role in point process theory in most respects analogous to the normal distribution in the study of random variables. We first propose a statistical model for cluster analysis based on the homogeneous Poisson process. The clustering criterion is extracted from that model thanks
发表于 2025-3-29 18:00:05 | 显示全部楼层
Menno L. W. Knetsch,Thomas J. Cleijinterpretation issues. A TWO-CLASS tree methodoloy for non-parametric regression analysis is introduced. Data are as follows: a numerical response variable and a set of predictors (of categorical and/or numerical type) are measured on a sample of objects, with no probability assumption. Thus a non-p
发表于 2025-3-29 20:28:40 | 显示全部楼层
发表于 2025-3-30 00:50:37 | 显示全部楼层
发表于 2025-3-30 07:06:20 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 16:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表