找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classification and Multivariate Analysis for Complex Data Structures; Bernard Fichet,Domenico Piccolo,Maurizio Vichi Conference proceeding

[复制链接]
查看: 54950|回复: 59
发表于 2025-3-21 19:56:30 | 显示全部楼层 |阅读模式
书目名称Classification and Multivariate Analysis for Complex Data Structures
编辑Bernard Fichet,Domenico Piccolo,Maurizio Vichi
视频video
概述Latest advances in data analysis methods for multidimensional data.With contributions by international experts.Special attention to new methodological contributions from theoretical and applicative po
丛书名称Studies in Classification, Data Analysis, and Knowledge Organization
图书封面Titlebook: Classification and Multivariate Analysis for Complex Data Structures;  Bernard Fichet,Domenico Piccolo,Maurizio Vichi Conference proceeding
描述The growing capabilities in generating and collecting data has risen an urgent need of new techniques and tools in order to analyze, classify and summarize statistical information, as well as to discover and characterize trends, andto automatically bag anomalies. This volume provides the latest advances in data analysis methods for multidimensional data which can present a complex structure: The book offers a selection of papers presented at the first Joint Meeting of the Société Francophone de Classification and the Classification and Data Analysis Group of the Italian Statistical Society. Special attention is paid to new methodological contributions fromboth the theoretical and the applicative point of views, in the fields of Clustering, Classification, Time Series Analysis, Multidimensional Data Analysis, Knowledge Discovery from Large Datasets, Spatial Statistics.
出版日期Conference proceedings 2011
关键词Classification; Data Mining; Multidimensional Data; Multivariate Data Analysis; Optimal Scaling
版次1
doihttps://doi.org/10.1007/978-3-642-13312-1
isbn_softcover978-3-642-13311-4
isbn_ebook978-3-642-13312-1Series ISSN 1431-8814 Series E-ISSN 2198-3321
issn_series 1431-8814
copyrightSpringer-Verlag Berlin Heidelberg 2011
The information of publication is updating

书目名称Classification and Multivariate Analysis for Complex Data Structures影响因子(影响力)




书目名称Classification and Multivariate Analysis for Complex Data Structures影响因子(影响力)学科排名




书目名称Classification and Multivariate Analysis for Complex Data Structures网络公开度




书目名称Classification and Multivariate Analysis for Complex Data Structures网络公开度学科排名




书目名称Classification and Multivariate Analysis for Complex Data Structures被引频次




书目名称Classification and Multivariate Analysis for Complex Data Structures被引频次学科排名




书目名称Classification and Multivariate Analysis for Complex Data Structures年度引用




书目名称Classification and Multivariate Analysis for Complex Data Structures年度引用学科排名




书目名称Classification and Multivariate Analysis for Complex Data Structures读者反馈




书目名称Classification and Multivariate Analysis for Complex Data Structures读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:58:15 | 显示全部楼层
Research-Based Teacher Evaluation of .(.). This second step determines the choice of . by using a classification criterion based on the ordering of the sample mean squared errors. The research belongs to the theory of optimal design of experiments [2], that is employed in the Taguchi Methods, used in off-line control [6].
发表于 2025-3-22 02:28:27 | 显示全部楼层
A Cognitive Approach to Audio Description graph and Laplacian matrix. The second step concerns the comparison between the obtained distance matrices by using Multidimensional Scaling techniques. The procedure has a wide range of application, especially for experimental purposes in social network applications where this issue has not been treated systematically.
发表于 2025-3-22 07:46:58 | 显示全部楼层
Kulnaree Sueroj,Phatteera Sarakornborriraktimes compared to other incremental building methods and is particularly well adapted to the visualization of groups of data (i.e. clusters) thanks to the super-node structure. In addition the visualization using a force-directed algorithm respects the real distances between data.
发表于 2025-3-22 11:00:40 | 显示全部楼层
发表于 2025-3-22 14:01:59 | 显示全部楼层
发表于 2025-3-22 18:58:29 | 显示全部楼层
On Building and Visualizing Proximity Graphs for Large Data Sets with Artificial Antstimes compared to other incremental building methods and is particularly well adapted to the visualization of groups of data (i.e. clusters) thanks to the super-node structure. In addition the visualization using a force-directed algorithm respects the real distances between data.
发表于 2025-3-23 00:15:44 | 显示全部楼层
发表于 2025-3-23 05:15:45 | 显示全部楼层
发表于 2025-3-23 07:40:02 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 03:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表