找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical Topics in Complex Function Theory; Reinhold Remmert Textbook 1998 Springer Science+Business Media New York 1998 analytic functio

[复制链接]
楼主: FAD
发表于 2025-3-26 22:14:39 | 显示全部楼层
Mary Lynn Hamilton,Stefinee Pinnegariance theorem. The property of “having the same number of holes” is defined by how . lies in ℂ and at first glance is not an invariant of .. In order to prove the invariance of the number of holes, we assign every domain in ℂ its .. The . of this group, called the ., is a biholomorphic (even topological) invariant of the domain.
发表于 2025-3-27 01:17:43 | 显示全部楼层
发表于 2025-3-27 08:43:57 | 显示全部楼层
发表于 2025-3-27 10:02:03 | 显示全部楼层
发表于 2025-3-27 17:06:50 | 显示全部楼层
Kamden K. Strunk,Jasmine S. Bettiesor many arguments in analysis. But caution is necessary: There are sequences of real-analytic functions from the interval [0, 1] into a . interval that have no convergent subsequences. A nontrivial example is the sequence sin 2.; cf. 1.1.
发表于 2025-3-27 21:09:29 | 显示全部楼层
Jeff Walls,Samantha E. Holquistnctions without knowing closed analytic expressions (such as integral formulas or power series) for them. Furthermore, analytic properties of the mapping functions can be obtained from geometric properties of the given domains.
发表于 2025-3-27 22:36:08 | 显示全部楼层
发表于 2025-3-28 04:21:57 | 显示全部楼层
Holomorphic Functions with Prescribed Zeroshey are built up from Weierstrass factors . and converge normally in regions that contain ℂ. (product theorem 1.3). In Section 2 we develop, among other things, the theory of the greatest common divisor for integral domains .(.).
发表于 2025-3-28 06:30:43 | 显示全部楼层
Iss’sa’s Theorem. Domains of Holomorphym — that . domain in ℂ is a domain of holomorphy. In Section 3 we conclude by discussing simple examples of functions whose domains of holomorphy have the form .; Cassini domains, in particular, are of this form.
发表于 2025-3-28 13:28:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 14:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表